We consider a class of variational problems for differential inclusions, related to the control of wild fires. The area burned by the fire at time t > 0 is modelled as the reachable set for a differential inclusion ∈ F(x), starting from an initial set R0. To block the fire, a barrier can be constructed progressively in time. For each t > 0, the portion of the wall constructed within time t is described by a rectifiable set γ(t) ⊂ . In this paper we show that the search for blocking strategies and for optimal strategies can be reduced to a problem involving one single admissible rectifiable set Γ ⊂ , rather than the multifunction t γ(t) ⊂ . Relying on this result, we then develop a numerical algorithm for the computation of optimal strategies, minimizing the total area burned by the fire.
Mots-clés : dynamic blocking problem, differential inclusion, constrained minimum time problem
@article{COCV_2010__16_4_974_0, author = {Bressan, Alberto and Wang, Tao}, title = {Equivalent formulation and numerical analysis of a fire confinement problem}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {974--1001}, publisher = {EDP-Sciences}, volume = {16}, number = {4}, year = {2010}, doi = {10.1051/cocv/2009033}, mrnumber = {2744158}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2009033/} }
TY - JOUR AU - Bressan, Alberto AU - Wang, Tao TI - Equivalent formulation and numerical analysis of a fire confinement problem JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 974 EP - 1001 VL - 16 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2009033/ DO - 10.1051/cocv/2009033 LA - en ID - COCV_2010__16_4_974_0 ER -
%0 Journal Article %A Bressan, Alberto %A Wang, Tao %T Equivalent formulation and numerical analysis of a fire confinement problem %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 974-1001 %V 16 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2009033/ %R 10.1051/cocv/2009033 %G en %F COCV_2010__16_4_974_0
Bressan, Alberto; Wang, Tao. Equivalent formulation and numerical analysis of a fire confinement problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 4, pp. 974-1001. doi : 10.1051/cocv/2009033. http://www.numdam.org/articles/10.1051/cocv/2009033/
[1] Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2000). | Zbl
, and ,[2] Differential Inclusions. Springer-Verlag, Berlin (1984). | Zbl
and ,[3] Differential inclusions and the control of forest fires. J. Differ. Equ. 243 (2007) 179-207 (special volume in honor of A. Cellina and J. Yorke). | Zbl
,[4] Existence of optimal strategies for a fire confinement problem. Comm. Pure Appl. Math. 62 (2009) 789-830. | Zbl
and ,[5] The minimum speed for a blocking problem on the half plane. J. Math. Anal. Appl. 356 (2009) 133-144. | Zbl
and ,[6] Blocking strategies for a fire control problem. Anal. Appl. 6 (2008) 229-246. | Zbl
, , and ,[7] Rectifiable Sets, Densities and Tangent Measures, Zürich Lectures in Advanced Mathematics. EMS Publishing House (2008). | Zbl
,[8] Geometric Measure Theory. Springer-Verlag, New York (1969). | Zbl
,[9] A Combinatorial Introduction to Topology. W.H. Freeman, San Francisco (1979). | Zbl
,[10] Topology, Vol. II. Academic Press, New York (1968). | Zbl
.[11] A Basic Course in Algebraic Topology. Springer-Verlag, New York (1991). | Zbl
,[12] Numerical Optimization. Springer, New York (2006). | Zbl
and .Cité par Sources :