The left-invariant sub-riemannian problem on the group of motions of a plane is considered. Sub-riemannian geodesics are parameterized by Jacobi's functions. Discrete symmetries of the problem generated by reflections of pendulum are described. The corresponding Maxwell points are characterized, on this basis an upper bound on the cut time is obtained.
Mots-clés : optimal control, sub-riemannian geometry, differential-geometric methods, left-invariant problem, Lie group, Pontryagin maximum principle, symmetries, exponential mapping, Maxwell stratum
@article{COCV_2010__16_2_380_0, author = {Moiseev, Igor and Sachkov, Yuri L.}, title = {Maxwell strata in sub-riemannian problem on the group of motions of a plane}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {380--399}, publisher = {EDP-Sciences}, volume = {16}, number = {2}, year = {2010}, doi = {10.1051/cocv/2009004}, mrnumber = {2654199}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2009004/} }
TY - JOUR AU - Moiseev, Igor AU - Sachkov, Yuri L. TI - Maxwell strata in sub-riemannian problem on the group of motions of a plane JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 380 EP - 399 VL - 16 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2009004/ DO - 10.1051/cocv/2009004 LA - en ID - COCV_2010__16_2_380_0 ER -
%0 Journal Article %A Moiseev, Igor %A Sachkov, Yuri L. %T Maxwell strata in sub-riemannian problem on the group of motions of a plane %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 380-399 %V 16 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2009004/ %R 10.1051/cocv/2009004 %G en %F COCV_2010__16_2_380_0
Moiseev, Igor; Sachkov, Yuri L. Maxwell strata in sub-riemannian problem on the group of motions of a plane. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 2, pp. 380-399. doi : 10.1051/cocv/2009004. http://www.numdam.org/articles/10.1051/cocv/2009004/
[1] Exponential mappings for contact sub-Riemannian structures. J. Dyn. Control Systems 2 (1996) 321-358. | Zbl
,[2] Control Theory from the Geometric Viewpoint. Springer-Verlag, Berlin (2004). | Zbl
and ,[3] Nonholonomic Mechanics and Control. Springer (2003).
, , and ,[4] Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2) and Lens Spaces. SIAM J. Control Optim. 47 (2008) 1851-1878. | Zbl
and ,[5] Control theory and singular Riemannian geometry, in New Directions in Applied Mathematics, P. Hilton and G. Young Eds., Springer-Verlag, New York (1981) 11-27. | Zbl
,[6] Small sub-Riemannian balls on . J. Dyn. Control Systems 2 (1996) 359-421. | Zbl
, and ,[7] Geometric Control Theory. Cambridge University Press (1997). | Zbl
,[8] Nonholonomic motion planning for mobile robots, Lecture notes in Control and Information Sciences 229. Springer (1998).
,[9] The step-2 nilpotent (n, n(n+1)/2) sub-Riemannian geometry. J. Dyn. Control Systems 12 (2006) 185-216. | Zbl
and ,[10] A Tour of Subriemannian Geometries, Their Geodesics and Applications. American Mathematical Society (2002). | Zbl
,[11] Nilpotent (3, 6) sub-Riemannian problem. J. Dyn. Control Systems 8 (2002) 573-597. | Zbl
,[12] Nilpotent (n, n(n+1)/2) sub-Riemannian problem. J. Dyn. Control Systems 12 (2006) 87-95. | Zbl
,[13] The neurogeometry of pinwheels as a sub-Riemannian contact stucture. J. Physiology - Paris 97 (2003) 265-309.
,[14] The mathematical theory of optimal processes. Wiley Interscience (1962). | Zbl
, , and ,[15] Exponential map in the generalized Dido's problem. Mat. Sbornik 194 (2003) 63-90 (in Russian). English translation in: Sb. Math. 194 (2003) 1331-1359. | Zbl
,[16] Discrete symmetries in the generalized Dido problem. Mat. Sbornik 197 (2006) 95-116 (in Russian). English translation in: Sb. Math. 197 (2006) 235-257. | Zbl
,[17] The Maxwell set in the generalized Dido problem. Mat. Sbornik 197 (2006) 123-150 (in Russian). English translation in: Sb. Math. 197 (2006) 595-621. | Zbl
,[18] Complete description of the Maxwell strata in the generalized Dido problem. Mat. Sbornik 197 (2006) 111-160 (in Russian). English translation in: Sb. Math. 197 (2006) 901-950. | Zbl
,[19] Maxwell strata in Euler's elastic problem. J. Dyn. Control Systems 14 (2008) 169-234. | Zbl
,[20] Conjugate points in Euler's elastic problem. J. Dyn. Control Systems 14 (2008) 409-439. | Zbl
,[21] Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV (Submitted). | Numdam
,[22] Nonholonomic Dynamical Systems, Geometry of distributions and variational problems (Russian), in Itogi Nauki i Tekhniki: Sovremennye Problemy Matematiki, Fundamental'nyje Napravleniya 16, VINITI, Moscow (1987) 5-85. English translation in: Encyclopedia of Mathematical Sciences 16, Dynamical Systems 7, Springer Verlag. | Zbl
and ,[23] A Course of Modern Analysis, An introduction to the general theory of infinite processes and of analytic functions; with an account of principal transcendental functions. Cambridge University Press, Cambridge (1996). | Zbl
and ,Cité par Sources :