Fix two points and two directions (without orientation) of the velocities in these points. In this paper we are interested to the problem of minimizing the cost along all smooth curves starting from x with direction η and ending in with direction . Here g is the standard riemannian metric on S2 and is the corresponding geodesic curvature. The interest of this problem comes from mechanics and geometry of vision. It can be formulated as a sub-riemannian problem on the lens space L(4,1). We compute the global solution for this problem: an interesting feature is that some optimal geodesics present cusps. The cut locus is a stratification with non trivial topology.
Mots clés : Carnot-caratheodory distance, geometry of vision, lens spaces, global cut locus
@article{COCV_2010__16_2_275_0, author = {Boscain, Ugo and Rossi, Francesco}, title = {Projective {Reeds-Shepp} car on {S2} with quadratic cost}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {275--297}, publisher = {EDP-Sciences}, volume = {16}, number = {2}, year = {2010}, doi = {10.1051/cocv:2008075}, mrnumber = {2654194}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2008075/} }
TY - JOUR AU - Boscain, Ugo AU - Rossi, Francesco TI - Projective Reeds-Shepp car on S2 with quadratic cost JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 275 EP - 297 VL - 16 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2008075/ DO - 10.1051/cocv:2008075 LA - en ID - COCV_2010__16_2_275_0 ER -
%0 Journal Article %A Boscain, Ugo %A Rossi, Francesco %T Projective Reeds-Shepp car on S2 with quadratic cost %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 275-297 %V 16 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2008075/ %R 10.1051/cocv:2008075 %G en %F COCV_2010__16_2_275_0
Boscain, Ugo; Rossi, Francesco. Projective Reeds-Shepp car on S2 with quadratic cost. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 2, pp. 275-297. doi : 10.1051/cocv:2008075. http://www.numdam.org/articles/10.1051/cocv:2008075/
[1] Methods of control theory in nonholonomic geometry, in Proc. ICM-94, Birkhauser, Zürich (1995) 1473-1483. | Zbl
,[2] Exponential mappings for contact sub-Riemannian structures. J. Dyn. Contr. Syst. 2 (1996) 321-358. | Zbl
,[3] Compactness for sub-Riemannian length-minimizers and subanalyticity. Rend. Sem. Mat. Univ. Politec. Torino 56 (2001) 1-12. | Zbl
,[4] Control Theory from the Geometric Viewpoint, Encyclopedia of Mathematical Sciences 87. Springer (2004). | Zbl
and ,[5] The tangent space in sub-Riemannian geometry, in Sub-Riemannian Geometry, Progress in Mathematics 144, Birkhäuser, Basel (1996) 1-78. | Zbl
,[6] Singular trajectories and their role in control theory. Springer-Verlag, Berlin (2003). | Zbl
and ,[7] Optimal Synthesis for Control Systems on 2-D Manifolds, SMAI 43. Springer (2004). | Zbl
and ,[8] Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2) and lens spaces. SIAM J. Contr. Opt. 47 (2008) 1851-1878. | Zbl
and ,[9] On the K+P problem for a three-level quantum system: Optimality implies resonance. J. Dyn. Contr. Syst. 8 (2002) 547-572. | Zbl
, and ,[10] Introduction to the Mathematical Theory of Control, Appl. Math. Series 2. American Institute of Mathematical Sciences (2007). | Zbl
and ,[11] Explicitly solvable control problems with nonholonomic constraints, in Proceedings of the 38th IEEE Conference on Decision and Control 1 (1999) 13-16.
,[12] Dubins' problem on surfaces. I. Nonnegative curvature J. Geom. Anal. 15 (2005) 565-587. | Zbl
and ,[13] Genericity results for singular curves. J. Differential Geometry 73 (2006) 45-73. | Zbl
, and ,[14] A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 24 (2006) 307-326. | Zbl
and ,[15] Carnot-Caratheodory spaces seen from within, in Sub-Riemannian Geometry, Progress in Mathematics 144, Birkhäuser, Basel (1996) 79-323. | Zbl
,[16] Geometric Control Theory. Cambridge University Press (1997). | Zbl
,[17] Optimal Control, Geometry and Mechanics, in Mathematical Control Theory, J. Bailleu and J.C. Willems Eds., Springer, New York (1999) 227-267. | Zbl
,[18] Hamiltonian Point of View on non-Euclidean Geometry and Elliptic Functions. System Control Lett. 43 (2001) 25-41. | Zbl
,[19] Vers une Neuro-géométrie. Fibrations corticales, structures de contact et contours subjectifs modaux, in Mathématiques, Informatique et Sciences Humaines 145, Special issue, EHESS, Paris (1999) 5-101.
,[20] The Mathematical Theory of Optimal Processes. John Wiley and Sons, Inc. (1961). | Zbl
, , and ,[21] Optimal paths for a car that goes both forwards and backwards. Pacific J. Math. 145 (1990) 367-393.
and ,[22] Knots and links. Publish or Perish, Houston (1990). | Zbl
,[23] Maxwell strata in Euler's elastic problem. J. Dyn. Contr. Syst. 14 (2008) 169-234. | Zbl
,[24] A comprehensive introduction to differential geometry. Second edition, Publish or Perish, Inc., Wilmington, Del. (1979). | Zbl
,Cité par Sources :