Fix two points
Keywords: Carnot-caratheodory distance, geometry of vision, lens spaces, global cut locus
@article{COCV_2010__16_2_275_0, author = {Boscain, Ugo and Rossi, Francesco}, title = {Projective {Reeds-Shepp} car on {S2} with quadratic cost}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {275--297}, publisher = {EDP Sciences}, volume = {16}, number = {2}, year = {2010}, doi = {10.1051/cocv:2008075}, mrnumber = {2654194}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2008075/} }
TY - JOUR AU - Boscain, Ugo AU - Rossi, Francesco TI - Projective Reeds-Shepp car on S2 with quadratic cost JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 275 EP - 297 VL - 16 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2008075/ DO - 10.1051/cocv:2008075 LA - en ID - COCV_2010__16_2_275_0 ER -
%0 Journal Article %A Boscain, Ugo %A Rossi, Francesco %T Projective Reeds-Shepp car on S2 with quadratic cost %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 275-297 %V 16 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2008075/ %R 10.1051/cocv:2008075 %G en %F COCV_2010__16_2_275_0
Boscain, Ugo; Rossi, Francesco. Projective Reeds-Shepp car on S2 with quadratic cost. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 2, pp. 275-297. doi : 10.1051/cocv:2008075. https://www.numdam.org/articles/10.1051/cocv:2008075/
[1] Methods of control theory in nonholonomic geometry, in Proc. ICM-94, Birkhauser, Zürich (1995) 1473-1483. | Zbl
,[2] Exponential mappings for contact sub-Riemannian structures. J. Dyn. Contr. Syst. 2 (1996) 321-358. | Zbl
,[3] Compactness for sub-Riemannian length-minimizers and subanalyticity. Rend. Sem. Mat. Univ. Politec. Torino 56 (2001) 1-12. | Zbl
,[4] Control Theory from the Geometric Viewpoint, Encyclopedia of Mathematical Sciences 87. Springer (2004). | Zbl
and ,[5] The tangent space in sub-Riemannian geometry, in Sub-Riemannian Geometry, Progress in Mathematics 144, Birkhäuser, Basel (1996) 1-78. | Zbl
,[6] Singular trajectories and their role in control theory. Springer-Verlag, Berlin (2003). | Zbl
and ,[7] Optimal Synthesis for Control Systems on 2-D Manifolds, SMAI 43. Springer (2004). | Zbl
and ,[8] Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2) and lens spaces. SIAM J. Contr. Opt. 47 (2008) 1851-1878. | Zbl
and ,[9] On the K+P problem for a three-level quantum system: Optimality implies resonance. J. Dyn. Contr. Syst. 8 (2002) 547-572. | Zbl
, and ,[10] Introduction to the Mathematical Theory of Control, Appl. Math. Series 2. American Institute of Mathematical Sciences (2007). | Zbl
and ,[11] Explicitly solvable control problems with nonholonomic constraints, in Proceedings of the 38th IEEE Conference on Decision and Control 1 (1999) 13-16.
,[12] Dubins' problem on surfaces. I. Nonnegative curvature J. Geom. Anal. 15 (2005) 565-587. | Zbl
and ,[13] Genericity results for singular curves. J. Differential Geometry 73 (2006) 45-73. | Zbl
, and ,[14] A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 24 (2006) 307-326. | Zbl
and ,[15] Carnot-Caratheodory spaces seen from within, in Sub-Riemannian Geometry, Progress in Mathematics 144, Birkhäuser, Basel (1996) 79-323. | Zbl
,[16] Geometric Control Theory. Cambridge University Press (1997). | Zbl
,[17] Optimal Control, Geometry and Mechanics, in Mathematical Control Theory, J. Bailleu and J.C. Willems Eds., Springer, New York (1999) 227-267. | Zbl
,[18] Hamiltonian Point of View on non-Euclidean Geometry and Elliptic Functions. System Control Lett. 43 (2001) 25-41. | Zbl
,[19] Vers une Neuro-géométrie. Fibrations corticales, structures de contact et contours subjectifs modaux, in Mathématiques, Informatique et Sciences Humaines 145, Special issue, EHESS, Paris (1999) 5-101.
,[20] The Mathematical Theory of Optimal Processes. John Wiley and Sons, Inc. (1961). | Zbl
, , and ,[21] Optimal paths for a car that goes both forwards and backwards. Pacific J. Math. 145 (1990) 367-393.
and ,[22] Knots and links. Publish or Perish, Houston (1990). | Zbl
,[23] Maxwell strata in Euler's elastic problem. J. Dyn. Contr. Syst. 14 (2008) 169-234. | Zbl
,[24] A comprehensive introduction to differential geometry. Second edition, Publish or Perish, Inc., Wilmington, Del. (1979). | Zbl
,Cité par Sources :