Null-controllability of one-dimensional parabolic equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 2, pp. 284-293.

We prove the interior null-controllability of one-dimensional parabolic equations with time independent measurable coefficients.

DOI : 10.1051/cocv:2007055
Classification : 35B37
Mots-clés : null-controllability
@article{COCV_2008__14_2_284_0,
     author = {Alessandrini, Giovanni and Escauriaza, Luis},
     title = {Null-controllability of one-dimensional parabolic equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {284--293},
     publisher = {EDP-Sciences},
     volume = {14},
     number = {2},
     year = {2008},
     doi = {10.1051/cocv:2007055},
     mrnumber = {2394511},
     zbl = {1145.35337},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2007055/}
}
TY  - JOUR
AU  - Alessandrini, Giovanni
AU  - Escauriaza, Luis
TI  - Null-controllability of one-dimensional parabolic equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2008
SP  - 284
EP  - 293
VL  - 14
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2007055/
DO  - 10.1051/cocv:2007055
LA  - en
ID  - COCV_2008__14_2_284_0
ER  - 
%0 Journal Article
%A Alessandrini, Giovanni
%A Escauriaza, Luis
%T Null-controllability of one-dimensional parabolic equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2008
%P 284-293
%V 14
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2007055/
%R 10.1051/cocv:2007055
%G en
%F COCV_2008__14_2_284_0
Alessandrini, Giovanni; Escauriaza, Luis. Null-controllability of one-dimensional parabolic equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 2, pp. 284-293. doi : 10.1051/cocv:2007055. http://www.numdam.org/articles/10.1051/cocv:2007055/

[1] L. Ahlfors and L. Bers, Riemann's mapping theorem for variable metrics. Ann. Math 72 (1960) 265-296. | MR | Zbl

[2] G. Alessandrini and R. Magnanini, Elliptic equations in divergence form, geometric critical oints of solutions and Stekloff eigenfunctions. SIAM J. Math. Anal 25 (1994) 1259-1268. | MR | Zbl

[3] G. Alessandrini and L. Rondi, Stable determination of a crack in a planar inhomogeneous conductor. SIAM J. Math. Anal 30 (1998) 326-340. | MR | Zbl

[4] L. Bers and L. Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coefficients and applications, in Convegno Internazionale sulle Equazioni alle Derivate Parziali, Cremonese, Roma (1955) 111-138. | MR | Zbl

[5] L. Bers, F. John and M. Schechter, Partial Differential Equations. Interscience, New York (1964). | MR | Zbl

[6] T. Carleman, Les Fonctions Quasi Analytiques. Gauthier-Villars, Paris (1926). | JFM

[7] C. Castro and E. Zuazua, Concentration and lack of observability of waves in highly heterogeneous media. Arch. Rat. Mech. Anal 164 (2002) 39-72. | MR | Zbl

[8] E. Fernandez-Cara and E. Zuazua, On the null controllability of the one-dimensional heat equation with BV coefficients Comput. Appl. Math. 21 (2002) 167-190. | MR | Zbl

[9] A.V. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations Lecture Notes Series 34, Research Institute of Mathematics, Global Analysis Research Center, Seoul National University (1996). | MR | Zbl

[10] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edn., Springer-Verlag, Berlin-Heildeberg-New York-Tokyo (1983). | MR | Zbl

[11] O.Yu. Imanuvilov and M. Yamamoto, Carleman estimate for a parabolic equation in Sobolev spaces of negative order and its applications, in Control of Nonlinear Distributed Parameter Systems, G. Chen et al. Eds., Marcel-Dekker (2000) 113-137. | MR | Zbl

[12] E.M. Landis and O.A. Oleinik, Generalized analyticity and some related properties of solutions of elliptic and parabolic equations Russian Math. Surv. 29 (1974) 195-212. | MR | Zbl

[13] G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur Commun. Partial Differ. Equ. 20 (1995) 335-356. | MR | Zbl

[14] G. Lebeau and E. Zuazua, Null controllability of a system of linear thermoelasticity Arch. Rat. Mech. Anal. 141 (1998) 297-329. | MR | Zbl

[15] F.H. Lin, A uniqueness theorem for parabolic equations Comm. Pure Appl. Math 42 (1988) 125-136. | MR | Zbl

[16] A. López and E. Zuazua, Uniform null-controllability for the one-dimensional heat equation with rapidly oscillating periodic density Ann. I.H.P. - Analyse non linéaire 19 (2002) 543-580. | EuDML | Numdam | MR | Zbl

[17] A.I. Markushevich, Theory of Functions of a Complex Variable Prentice Hall, Englewood Cliffs, NJ (1965). | MR | Zbl

[18] D.L. Russel, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations Stud. Appl. Math. 52 (1973) 189-221. | MR | Zbl

[19] M. Tsuji, Potential Theory in Modern Function Theory Maruzen, Tokyo (1959). | MR | Zbl

[20] I.N. Vekua, Generalized Analytic Functions Pergamon, Oxford (1962). | MR | Zbl

Cité par Sources :