This paper considers the inversion problem related to the manipulation of quantum systems using laser-matter interactions. The focus is on the identification of the field free hamiltonian and/or the dipole moment of a quantum system. The evolution of the system is given by the Schrödinger equation. The available data are observations as a function of time corresponding to dynamics generated by electric fields. The well-posedness of the problem is proved, mainly focusing on the uniqueness of the solution. A numerical approach is also introduced with an illustration of its efficiency on a test problem.
Mots-clés : inverse problem, quantum systems, hamiltonian identification, optimal identification
@article{COCV_2007__13_2_378_0, author = {Bris, Claude Le and Mirrahimi, Mazyar and Rabitz, Herschel and Turinici, Gabriel}, title = {Hamiltonian identification for quantum systems : well-posedness and numerical approaches}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {378--395}, publisher = {EDP-Sciences}, volume = {13}, number = {2}, year = {2007}, doi = {10.1051/cocv:2007013}, mrnumber = {2306642}, zbl = {1123.93040}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2007013/} }
TY - JOUR AU - Bris, Claude Le AU - Mirrahimi, Mazyar AU - Rabitz, Herschel AU - Turinici, Gabriel TI - Hamiltonian identification for quantum systems : well-posedness and numerical approaches JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 378 EP - 395 VL - 13 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2007013/ DO - 10.1051/cocv:2007013 LA - en ID - COCV_2007__13_2_378_0 ER -
%0 Journal Article %A Bris, Claude Le %A Mirrahimi, Mazyar %A Rabitz, Herschel %A Turinici, Gabriel %T Hamiltonian identification for quantum systems : well-posedness and numerical approaches %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 378-395 %V 13 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2007013/ %R 10.1051/cocv:2007013 %G en %F COCV_2007__13_2_378_0
Bris, Claude Le; Mirrahimi, Mazyar; Rabitz, Herschel; Turinici, Gabriel. Hamiltonian identification for quantum systems : well-posedness and numerical approaches. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 2, pp. 378-395. doi : 10.1051/cocv:2007013. http://www.numdam.org/articles/10.1051/cocv:2007013/
[1] Notions of controllability for multilevel bilinear quantum mechanical systems. IEEE Trans. Automatic Control 48 (2003) 1399-1403.
and ,[2] On the inversion of quantum mechanical systems: Determining the amount and type of data for a unique solution. J. Math. Chem. 35 (2004) 65-78. | Zbl
, , , and ,[3] Claudio Altafini, Controllability of quantum mechanical systems by root space decomposition of . J. Math. Phys. 43 (2002) 2051-2062. | Zbl
[4] Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science 282 (1998) 919-922.
, , , , , , and ,[5] Feedback quantum control of molecular electronic population transfer. Chem. Phys. Lett. 280 (1997) 151.
, , , , and ,[6] Quantum control of population transfer in green fluorescent protein by using chirped femtosecond pulses. J. Am. Chem. Soc. 120 (1998) 13023-13027.
, , and ,[7] Nelder-Mead simplex modifications for simulation optimization. Manage. Sci. 42 (1996) 954-973. | Zbl
and ,[8] Competitive tracking of molecular objectives described by quantum mechanics. J. Chem. Phys. 102 (1995) 8001-8010.
, , , and ,[9] Mécanique Quantique, Volumes I & II. Hermann, Paris (1977).
, and ,[10] Optimal hamiltonian identification: The synthesis of quantum optimal control and quantum inversion. J. Chem. Phys 118 (2003) 5369-5382.
and ,[11] Teaching lasers to control molecules. Phys. Rev. Lett. 68 (1992) 1500.
and ,[12] Identification of quantum systems. In Proceedings of the 15th IFAC World Congress (2002).
and ,[13] Information Theory and Statistics. Wiley, New York (1959). | MR | Zbl
,[14] On information and sufficiency. Ann. Math. Stat. 22 (1951) 79-86. | Zbl
and ,[15] Towards efficient numerical approaches for quantum control. In Quantum Control: mathematical and numerical challenges, A. Bandrauk, M.C. Delfour and C. Le Bris Eds., CRM Proc. Lect. Notes Ser., AMS Publications, Providence, R.I. (2003) 127-142.
, and ,[16] Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses. Science 292 (2001) 709.
, and ,[17] Optimal dynamic discrimination of similar molecules through quantum learning control. J. Phys. Chem. B. 106 (2002) 8125-8131.
, , and ,[18] New formulations of monotonically convergent quantum control algorithms. J. Chem. Phys 118 (18) (2003).
and ,[19] Lyapunov control of bilinear Schrödinger equations. Automatica 41 (2005) 1987-1994. | Zbl
, and ,[20] Reference trajectory tracking for locally designed coherent quantum controls. J. Phys. Chem. A 109 (2005) 2631-2637.
, and ,[21] Learning control of quantum-mechanical systems by laboratory identification of effective input-output maps. Chem. Phys. 217 (1997) 389-400.
and ,[22] Perspective. Shaped laser pulses as reagents. Science 299 (2003) 525-527.
,[23] Controllability of molecular systems. Phys. Rev. A 51 (1995) 960-966.
, , and ,[24] Optimal Control of Quatum Dynamics. Wiley (2000) (many additional references to the subjects of this paper may also be found here).
and ,[25] Nonlinear kinetic parameter identification through map inversion. J. Phys. Chem. A 106 (2002) 12315-12323.
, and ,[26] Explicit method for parameter identification. J. Guid. Control Dyn. 20 (1997) 486-491. | Zbl
and ,[27] Quantum wavefunction controllability. Chem. Phys. 267 (2001) 1-9.
and ,[28] Wavefunction controllability in quantum systems. J. Phys. A 36 (2003) 2565-2576. | Zbl
and ,[29] T Weinacht, J. Ahn and P. Bucksbaum, Controlling the shape of a quantum wavefunction. Nature 397 (1999) 233.
[30] A rapid monotonically convergent iteration algorithm for quantum optimal control over the expectation value of a positive definite operator. J. Chem. Phys. 109 (1998) 385-391.
and ,[31] Potential surfaces from the inversion of time dependent probability density data. J. Chem. Phys. 111 (1999) 472-480.
and ,Cité par Sources :