Null-controllability of some systems of parabolic type by one control force
ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 3, pp. 426-448.

We study the null controllability by one control force of some linear systems of parabolic type. We give sufficient conditions for the null controllability property to be true and, in an abstract setting, we prove that it is not always possible to control.

DOI : 10.1051/cocv:2005013
Classification : 93B05, 93C20, 93C25, 35K90
Mots clés : control, parabolic systems
Khodja, Farid Ammar  ; Benabdallah, Assia  ; Dupaix, Cédric  ; Kostin, Ilya 1

1 Université de Saint-Etienne, Équipe d’Analyse Numérique, 23 rue Paul MICHELON, 42023 Saint-Etienne Cedex 02, France;
@article{COCV_2005__11_3_426_0,
     author = {Khodja, Farid Ammar and Benabdallah, Assia and Dupaix, C\'edric and Kostin, Ilya},
     title = {Null-controllability of some systems of parabolic type by one control force},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {426--448},
     publisher = {EDP-Sciences},
     volume = {11},
     number = {3},
     year = {2005},
     doi = {10.1051/cocv:2005013},
     mrnumber = {2148852},
     zbl = {1125.93005},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2005013/}
}
TY  - JOUR
AU  - Khodja, Farid Ammar
AU  - Benabdallah, Assia
AU  - Dupaix, Cédric
AU  - Kostin, Ilya
TI  - Null-controllability of some systems of parabolic type by one control force
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2005
SP  - 426
EP  - 448
VL  - 11
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2005013/
DO  - 10.1051/cocv:2005013
LA  - en
ID  - COCV_2005__11_3_426_0
ER  - 
%0 Journal Article
%A Khodja, Farid Ammar
%A Benabdallah, Assia
%A Dupaix, Cédric
%A Kostin, Ilya
%T Null-controllability of some systems of parabolic type by one control force
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2005
%P 426-448
%V 11
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2005013/
%R 10.1051/cocv:2005013
%G en
%F COCV_2005__11_3_426_0
Khodja, Farid Ammar; Benabdallah, Assia; Dupaix, Cédric; Kostin, Ilya. Null-controllability of some systems of parabolic type by one control force. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 3, pp. 426-448. doi : 10.1051/cocv:2005013. http://www.numdam.org/articles/10.1051/cocv:2005013/

[1] F. Ammar-Khodja, A. Benabdallah, C. Dupaix and I. Kostine, Controllability to the trajectories of phase-field models by one control force. SIAM J. Control. Opt. 42 (2003) 1661-1680. | Zbl

[2] F. Ammar-Khodja, A. Benabdallah and C. Dupaix, Controllability of some reaction-diffusion models by one control force. To appear. | Zbl

[3] S. Anita and V. Barbu, Local exact controllability of a reaction-diffusion system. Diff. Integral Equ. 14 (2001) 577-587. | Zbl

[4] V. Barbu, Exact controllability of the superlinear heat equation. Appl. Math. Optim. 42 (2000) 73-89. | Zbl

[5] V. Barbu, Local controllability of the phase field system. Nonlinear Analysis 50 (2002) 363-372. | Zbl

[6] G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur. Comm. Partial Diff. Equ. 20 (1995) 335-356. | Zbl

[7] A. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations. Seoul National University, Korea. Lect. Notes Ser. 34 (1996). | MR | Zbl

[8] E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré, Anal. Non Linéaire 17 (2000) 583-616. | EuDML | Numdam | Zbl

[9] O.A. Ladyženskaja, V.A. Solonnikov and N.N. Ural'Ceva, Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs, AMS 23 (1968). | Zbl

[10] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag New York (1983). | MR | Zbl

[11] T.I. Seidman, How fast are violent controls? Math. Control Signals Syst. 1 (1988) 89-95. | Zbl

[12] T.I. Seidman and J. Yong, How fast are violent controls, II? Math Control Signals Syst. 9 (1997) 327-340. | Zbl

[13] J. Zabczyk, Mathematical Control Theory: An Introduction. Birkhäuser (1992). | MR | Zbl

Cité par Sources :