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CONVERGENCE AND ASYMPTOTIC STABILIZATION FOR SOME DAMPED
HYPERBOLIC EQUATIONS WITH NON-ISOLATED EQUILIBRIA ∗

Felipe Alvarez1, 2 and Hedy Attouch3

Abstract. It is established convergence to a particular equilibrium for weak solutions of abstract
linear equations of the second order in time associated with monotone operators with nontrivial kernel.
Concerning nonlinear hyperbolic equations with monotone and conservative potentials, it is proved a
general asymptotic convergence result in terms of weak and strong topologies of appropriate Hilbert
spaces. It is also considered the stabilization of a particular equilibrium via the introduction of an
asymptotically vanishing restoring force into the evolution equation.
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1. Introduction

Classical methods to establish the asymptotic convergence of trajectories of dissipative dynamical systems
assume isolated equilibrium points (local uniqueness). However, in many interesting cases the set of all equilibria
is a continuum of stationary solutions so that local uniqueness does not hold. The aim of this article is to show
that in the case of some infinite-dimensional second-order in time evolution equations, global monotonicity
conditions allow one to overcome the lack of uniqueness of stationary solutions in order to establish asymptotic
convergence. This work is motivated by a recent result of the first author concerning the asymptotic convergence
of the trajectories generated by a gradient equation of the type

d2u

dt2
(t) + α

du

dt
(t) + ∇Φ(u(t)) = 0, t > 0, (1)

where α > 0 is a real parameter, Φ : H → R is assumed to be continuously differentiable and convex, and H
is a real Hilbert space. When the set of minimizers of Φ is nonempty, it is proved in [1] that every solution
trajectory of (1) converges to a minimizer of Φ for the weak topology of H (see [4] for others results in this
connection). Observe that the convexity assumption on Φ amounts to the monotonicity of ∇Φ, that is, ∀x,
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y ∈ H, (∇Φ(x) − ∇Φ(y), x − y) ≥ 0. Of course, the regularity condition on Φ is too restrictive in view of
eventual applications to PDE. Nevertheless, it turns out that a more careful inspection of the proofs from [1]
permits us to extend the key arguments to cover actual hyperbolic problems.

This paper is organized as follows. We begin by considering in Section 2 the case of linear abstract equations
of the type

d2u

dt2
(t) + α

du

dt
(t) + Au(t) = 0, t > 0,

where α > 0, V and H are real Hilbert spaces such that V ⊂ H ⊂ V ′ with dense and continuous injections4,
u(0) = u0 ∈ V , du

dt (0) = v0 ∈ H , and A : V → V ′ is a symmetric, “weakly” coercive, linear monotone operator.
It is shown that the weak solution u(t) converges in V , as t → ∞, toward the projection in H of u0 + 1

αv0 onto
the kernel of A. Then we deal with the stabilization of the particular stationary solution u = 0 by introducing
into the equation an asymptotically vanishing restoring force of the type ε(t)u, with ε(t) > 0 and ε(t) → 0 as
t → ∞. Concerning the nonlinear case, an abstract result is established in Section 3 for an equation of the form

d2u

dt2
(t) + α

du

dt
(t) + Au(t) + f(u(t)) = 0, t > 0,

where f : V → H is continuous, monotone and conservative. In contrast with the linear case, no characterization
of the limit solution is given and the convergence toward an equilibrium is proved only for the weak topology
of V ; although strong convergence is an open problem in the general case, it does hold under compactness or
symmetry conditions. A nonlinear stabilization result is given, whose proof is briefly outlined. Finally, the
abstract convergence result is illustrated with some examples in Section 4.

Results and techniques similar in spirit to those presented here are well-known in the theory of first-order in
time evolution equations associated with monotone operators (cf. Brezis [6] and Bruck [7]; see also [2, 10, 12,
20]). With regard to damped second-order in time evolution equations with non-isolated equilibria, asymptotic
convergence results were obtained by Haraux [15] and Zuazua [23] using different tools; in the nonlinear case, they
assumed in addition that the kernel of A is one-dimensional. On the other hand, more recent general convergence
results by Hale and Raugel [14] and Brunovsky and Polacik [8] ensure in this context asymptotic convergence
without requiring monotonicity of f but under the additional assumption that the kernel of A is one-dimensional
and finite dimensional respectively. This type of result is well-known in finite dimensional dynamical system
theory under hyperbolic assumptions on the manifold of stationary solutions; see for instance [5]. The finite
dimension hypothesis on the kernel of A is unnecessarily in our approach and, moreover, we only use elementary
functional and energy methods. Finally, it is worth pointing out that when the nonlinearity is supposed to
be analytic instead of monotone, it is possible to establish the asymptotic convergence of the trajectory by
different methods; cf. Simon [21] for parabolic problems and the recent works by Haraux and Jendoubi [17,18]
for hyperbolic ones (under Dirichlet boundary conditions).

2. Linear equations

2.1. Asymptotic convergence to an equilibrium

Let us begin with a quite simple situation. Given a regular, bounded and connected domain Ω ⊂ R
N , and a

real parameter α > 0, let u(x, t) : Ω × [0,∞[→ R be a weak solution of the linear damped wave equation

utt + αut − ∆u = 0 in Ω×]0,∞[,

under homogeneous Neumann boundary conditions

∂u

∂n
= 0 on ∂Ω×]0,∞[.

4V ′ stands for the dual of V .
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The corresponding set of stationary solutions consists of all constant functions on Ω. If we assume that u(x, 0) =
u0(x) and ut(x, 0) = v0(x) with u0 ∈ H1(Ω) and v0 ∈ L2(Ω), then it is simple to verify that the Fourier
decomposition of solutions on the basis of the eigenfunctions of the Neumann Laplacian yields (u(·, t), ut(·, t)) →
(u∞, 0) strongly in H1(Ω) × L2(Ω) as t → ∞, with u∞ being the constant function given by

u∞ ≡ 1
|Ω|

∫
Ω

[
u0(x) +

1
α

v0(x)
]

dx,

where |Ω| is the Lebesgue measure of Ω.
In order to extend this type of convergence result to more general situations, let us consider two real Hilbert

spaces V and H with V ⊂ H . The scalar product and the norm on H and V are denoted by (·, ·), | · | and
((·, ·)), ‖ · ‖ respectively. It is supposed that V is dense in H with the injection being continuous, and H is
identified with its dual H ′ and with a dense subspace of the dual V ′ of V . Thus V ⊂ H ⊂ V ′, H being dense in
V ′ with continuous injection. We denote by 〈·, ·〉V ′,V the duality product between V ′ and V . Recall that with
the above identifications, 〈u, v〉V ′,V = (u, v) whenever u ∈ H and v ∈ V . Let a : V × V → R be a continuous
bilinear form satisfying:
(h1) a(·, ·) is symmetric: ∀u, v ∈ V , a(u, v) = a(v, u);
(h2) There exist λ ≥ 0 and µ > 0 such that ∀u ∈ V, a(u, u) + λ|u|2 ≥ µ‖u‖2;
(h3) a(·, ·) is monotone: ∀u ∈ V , a(u, u) ≥ 0.
Associating with a(·, ·) the continuous operator A : V → V ′ given by 〈Au, v〉V ′,V := a(u, v), we consider the
following abstract linear evolution equation of the second-order in time:

d2u

dt2
(t) + α

du

dt
(t) + Au(t) = 0, t > 0, (2)

where α > 0 is a real parameter. A weak solution of this problem is a function u(·) ∈ C([0,∞[; V )∩C1([0,∞[; H)
verifying for every v ∈ V

d
dt

(
du

dt
(·), v

)
+ α

(
du

dt
(·), v

)
+ a(u, v) = 0,

in the scalar distribution sense. The existence and uniqueness under initial conditions of such a solution u(t) is
well-known in infinite-dimensional dynamical systems theory; see [11] (Chap. XVIII). Moreover, the following
energy equation holds:

dE

dt
+ α

∣∣∣∣du

dt

∣∣∣∣2 = 0, (3)

where

E(t) :=
1
2

∣∣∣∣du

dt
(t)

∣∣∣∣2 +
1
2
a(u(t), u(t)).

Theorem 2.1. Under (h1–h3), for every α > 0, u0 ∈ V and v0 ∈ H, the unique solution u(t) of the initial-value
problem 

d2u

dt2
(t) + α

du

dt
(t) + Au(t) = 0, t > 0,

u(0) = u0,
du

dt
(0) = v0,

satisfies du
dt ∈ L2(0,∞; H), there exists C ≥ 0 such that E(t) ≤ C/t, and (u(t), du

dt (t)) → (u∞, 0) strongly in
V × H as t → ∞, with

u∞ = Projker A

(
u0 +

1
α

v0

)
.
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Here, Projker A(z) stands for the orthogonal projection of z ∈ H onto kerA := {v ∈ V : Av = 0}, relative to the
scalar product (·, ·) on H.

Proof. From (3), it follows that

E(t) + α

∫ t

0

∣∣∣∣du

dt
(τ)

∣∣∣∣2 dτ = E(0).

In particular, ∫ ∞

0

∣∣∣∣du

dt
(τ)

∣∣∣∣2 dτ ≤ 1
2α

[|v0|2 + a(u0, u0)].

Thus du
dt ∈ L2(0,∞; H). Define now the auxiliary real-valued function ϕ(t) := 1

2 |u(t)|2. We have ϕ ∈
C1(0,∞; R+) with ϕ̇(t) = (u(t), du

dt (t)). Since d2u
dt2 (t) + Au(t) ∈ H , a standard argument yields

d
dt

[ϕ̇(t)] =
(

d2u

dt2
(t) + Au(t), u(t)

)
− a(u(t), u(t)) +

∣∣∣∣du

dt
(t)

∣∣∣∣2 ,

which holds in the scalar distribution sense on ]0, T [ for every T > 0 (see, for instance [22], Chap. II, Lem. 4.1).
In this case, the latter amounts to ϕ̈(t) = −αϕ̇(t)− a(u(t), u(t)) + |du

dt (t)|2 in the classical sense. This equation
may be rewritten

ϕ̈(t) + αϕ̇(t) + 2E(t) = 2
∣∣∣∣du

dt
(t)

∣∣∣∣2 . (4)

Using that E(t) is non-increasing, a simple integration procedure shows that for every θ ∈ [0, t]

ϕ̇(θ) +
2
α

(1 − e−αθ)E(t) ≤ e−αθϕ̇(0) + 2
∫ θ

0

e−α(θ−τ)

∣∣∣∣du

dt
(τ)

∣∣∣∣2 dτ.

Hence

ϕ(t) +
2
α2

(e−αt − 1 + αt)E(t) ≤ ϕ(0) +
1
α

(1 − e−αt)ϕ̇(0) + 2h(t), (5)

where

h(t) :=
∫ t

0

∫ θ

0

e−α(θ−τ)

∣∣∣∣du

dt
(τ)

∣∣∣∣2 dτdθ. (6)

We conclude that

tE(t) ≤ α

2
ϕ(0) +

1
2
(1 − e−αt)

[
ϕ̇(0) +

2
α

E(0)
]

+ αh(t),

which holds for every t ≥ 0. Furthermore, by Fubini’s theorem

h(t) =
∫ t

0

∫ t

θ

e−α(θ−τ)

∣∣∣∣du

dt
(τ)

∣∣∣∣2 dτdθ =
1
α

∫ t

0

(1 − e−α(t−τ))
∣∣∣∣du

dt
(τ)

∣∣∣∣2 dτ ≤ 1
α

∫ ∞

0

∣∣∣∣du

dt
(τ)

∣∣∣∣2 dτ < ∞.

Therefore h(t) is bounded and, as a consequence, there exists a constant C ≥ 0 such that E(t) ≤ C/t. Therefore
lim

t→∞ |du
dt (t)| = lim

t→∞ a(u(t), u(t)) = 0. Moreover {ϕ(t)}t>0 is bounded so that the trajectory {u(t) : t → ∞} is

bounded in H . By (h2), {u(t) : t → ∞} is bounded in V .
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To establish the convergence of u(t) in V , let us consider a sequence tk → ∞ such that u(tk) ⇀ û weakly in
V for some û ∈ V . By weak lower semi-continuity of v ∈ V → a(v, v), we have

a(û, û) ≤ lim inf
k→∞

a(u(tk), u(tk)) = lim
t→∞ a(u(t), u(t)) = 0.

It follows easily from a(û, û) = 0 that for every v ∈ V, a(û, v) = 0, hence Aû = 0. When kerA is a singleton, we
conclude that {u(t) : t → ∞} admits a unique cluster point for the weak topology in V , hence that u(t) ⇀ u∞
weakly in V as t → ∞, where u∞ is the unique solution of Au∞ = 0. In the general case, observe that for every
v ∈ kerA we have that

d
dt

(
du

dt
, v

)
+ α

(
du

dt
, v

)
= 0,

and consequently

(u(t), v) =
(

u0 +
1
α

v0, v

)
− 1

α

(
du

dt
(t), v

)
.

Hence (û−u0− 1
αv0, v) = 0. Here, we have used that u(tk) ⇀ û weakly in H , which is true because the injection

from V into H is continuous. Thus, u∞ := Projker A(u0 + 1
αv0) is the unique cluster point of {u(t) : t → ∞}

for the weak topology in V , and so u(t) ⇀ u∞ weakly in V as t → ∞. It remains to prove that u(t) → u∞
strongly in V . By (h1, h2) and the fact that a(u∞, u(t)) = 0, we have

µ‖u(t) − u∞‖2 ≤ λ|u(t) − u∞|2 + a(u(t) − u∞, u(t) − u∞) = λ|u(t) − u∞|2 + a(u(t), u(t)),

which gives
lim sup

t→∞
‖u(t) − u∞‖ ≤

√
λ/µ lim sup

t→∞
|u(t) − u∞|.

To finish the proof, it suffices to show that u(t) → u∞ strongly in H as t → ∞. This is immediate under (h2)
when the injection from V into H is compact. When the injection is only continuous, it is possible to adapt to
this situation some arguments of [7], where a class of first-order in time equations is treated. Fix t0 > 0 and
define q : [0, t0] → R by

q(t) := |u(t)|2 − |u(t0)|2 − 1
2
|u(t) − u(t0)|2.

Then q̈(t) + αq̇(t) = −a(u(t)), u(t) + u(t0)) + |du
dt (t)|2. Since E(t) is non-increasing, we deduce that for every

t ∈ [0, t0]

1
2

∣∣∣∣du

dt
(t)

∣∣∣∣2 ≥ 1
2

∣∣∣∣du

dt
(t0)

∣∣∣∣2 +
1
2
[a(u(t0), u(t0)) − a(u(t), u(t))]

=
1
2

∣∣∣∣du

dt
(t0)

∣∣∣∣2 +
1
2
[a(u(t0), u(t) + u(t0)) − a(u(t), u(t) + u(t0))]

≥ 1
2

∣∣∣∣du

dt
(t0)

∣∣∣∣2 − a(u(t), u(t) + u(t0)),

where we have used the inequality a(v, u + v) ≥ −a(u, u + v). Consequently, q̈(t) + αq̇(t) ≤ 3
2 |du

dt (t)|2 for every
t ∈ [0, t0]. The standard integration procedure yields

q(t0) − q(t) ≤ q̇(0)
α

(e−αt − e−αt0) +
3
2

∫ t0

t

∫ θ

0

e−α(θ−τ)

∣∣∣∣du

dt
(τ)

∣∣∣∣2 dτdθ.

Therefore, for all t ∈ [0, t0] we have

1
2
|u(t) − u(t0)|2 ≤ |u(t)|2 − |u(t0)|2 +

q̇(0)
α

(e−αt − e−αt0) +
3
2
[h(t0) − h(t)], (7)
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where h is given by (6). Since du
dt ∈ L2(0,∞; H), by Fubini’s theorem h(t) converges as t → ∞. On the other

hand, from (4) it follows that

ϕ̈(t) + αϕ̇(t) ≤ 2
∣∣∣∣du

dt
(t)

∣∣∣∣2 .

Lemma 2.2. Let ϕ ∈ C1([0,∞[; R) be bounded from below and assume that ϕ̇ is absolutely continuous. If there
exist α > 0 and p ∈ L1(0,∞; R) such that ϕ̈(t) + αϕ̇(t) ≤ p(t) for a.e. t > 0, then ϕ(t) converges as t → ∞.

Proof. From the inequality ϕ̈(t) + αϕ̇(t) ≤ p(t), it follows that

ϕ̇(t) ≤ e−αtϕ̇(0) +
∫ t

0

e−α(t−τ)|p(τ)|dτ.

Thus
[ϕ̇(t)]+ ≤ e−αt[ϕ̇(0)]+ + q(t),

where [x]+ = max{x, 0} and q(t) :=
∫ t

0

e−α(t−τ)|p(τ)|dτ . Fubini’s theorem gives q ∈ L1(0,∞; R) and therefore

[ϕ̇]+ ∈ L1(0,∞; R). Setting w(t) := ϕ(t) − ∫ t

0
[ϕ̇(τ)]+dτ, we have that w(t) is bounded from below. But w(t) is

non-increasing because ẇ(t) = ϕ̇(t) − [ϕ̇(t)]+ ≤ 0. Hence w(t) converges as t → ∞, and consequently ϕ(t) is
convergent as well.

Let us return to the proof of Theorem 2.1. We claim that lim
t→∞ |u(t)| exists. Indeed, we can apply Lemma 2.2

with p(t) = 2|du
dt (t)|2 to conclude that ϕ(t) = 1

2 |u(t)|2 converges as t → ∞. We infer from (7) that {u(t) : t → ∞}
is a Cauchy generalized sequence in H . This completes the proof of the theorem.

Remark 2.3. A similar abstract equation is treated in [23] (Sect. 4), where, instead of (h2), it is supposed that

∃η > 0 : ∀u ∈ V, a(u, u) ≥ η‖u − Projker A(u)‖2. (8)

In fact, if (8) holds then there exist two constants k, δ > 0 such that

‖u(t) − Projker A(u(t))‖ +
∣∣∣∣du

dt
(t)

∣∣∣∣ ≤ ke−δt.

In particular, du
dt ∈ L1(0,∞; H) and we deduce that u(t) converges strongly in H as t → ∞ (see [23], Rem. 4.4).

On the other hand, Theorem 2.1 ensures strong convergence in V without assuming a priori that the trajectory
{u(t) : t → ∞} is precompact in V , and, moreover, the limit solution u∞ is completely characterized. Further-
more, in the convergence analysis we use (h2) only to establish boundedness and convergence in V . Thus, if we
drop assumption (h2) then we can deduce that every weak solution of (2) converges as t → ∞ for the strong
topology in H .

2.2. Stabilization of a particular stationary solution

By appropriately adjusting the initial conditions, one could let the trajectory asymptotically reach any
particular target equilibrium. Nevertheless, in many situations it is not possible to have an accurate control of
the initial state. An alternative approach consists in adjusting the forces acting on the system. For instance,
if we introduce into the differential equation a restoring force of the type ku with k > 0, then it is trivial to
show that the equilibrium u = 0 is globally asymptotically stable, i.e. every trajectory u(t) converges to 0 as
t → ∞. This is not surprising because when replacing Au by Au + ku, u = 0 is the unique stationary solution
of the corresponding evolution equation. More interesting is the case where Au is replaced by Au + ε(t)u with
ε(t) > 0 and ε(t) → 0 as t → ∞. Since in this situation the restoring force asymptotically vanishes as t → ∞,
convergence towards 0 is more delicate.
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Theorem 2.4. Assume (h1–h3) and let u ∈ C([0,∞[; V ) ∩ C1([0,∞[; H) be a solution of the following non-
autonomous evolution problem:

d2u

dt2
(t) + α

du

dt
(t) + Au(t) + ε(t)u(t) = 0, t > 0,

where α > 0 and ε : [0,∞[→ [0,∞[ is a given differentiable function such that for all t ≥ 0, ε̇(t) ≤ 0. Then
du
dt ∈ L2(0,∞; H), there exists C ≥ 0 such that Eε(t)(t) ≤ C/t where

Eε(t)(t) :=
1
2

∣∣∣∣du

dt
(t)

∣∣∣∣2 + a(u(t), u(t)) +
ε(t)
2

|u(t)|2,

and if we assume that ∫ ∞

0

ε(τ)dτ = ∞ (9)

then (u(t), du
dt (t)) → (0, 0) strongly in V × H as t → ∞.

Proof. It is easy to verify that in this case

d
dt

[Eε(t)(t)] = −α

∣∣∣∣du

dt
(t)

∣∣∣∣2 +
ε̇(t)
2

|u(t)|2.

Since ε̇(t) ≤ 0, we deduce that Eε(t)(t) is non-increasing and

Eε(t)(t) + α

∫ t

0

∣∣∣∣du

dt
(τ)

∣∣∣∣2 dτ = Eε0(0) +
1
2

∫ t

0

ε̇(τ)|u(τ)|2dτ ≤ Eε0(0).

Consequently, ∫ ∞

0

∣∣∣∣du

dt
(τ)

∣∣∣∣2 dτ ≤ 1
α

Eε0(0).

Let us introduce the function

ϕ(t) :=
1
2
|u(t)|2.

Computations similar to those in the proof of Theorem 2.1 yield

ϕ̈(t) + αϕ̇(t) + 2Eε(t)(t) = 2
∣∣∣∣du

dt
(t)

∣∣∣∣2 , (10)

and it follows by the same method that

ϕ(t) +
2
α2

(e−αt − 1 + αt)Eε(t)(t) ≤ ϕ(0) +
1
α

(1 − e−αt)ϕ̇(0) + 2h(t),

where h(t) is a bounded function. Hence Eε(t)(t) ≤ C/t for some constant C ≥ 0, and therefore

lim
t→∞

∣∣∣∣du

dt
(t)

∣∣∣∣ = lim
t→∞ a(u(t), u(t)) = lim

t→∞ ε(t)|u(t)|2 = lim
t→∞Eε(t)(t) = 0.
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Furthermore, it follows that ϕ(t) is bounded, which means that u(t) is bounded in H . We claim that lim
t→∞ |u(t)|

exists. Indeed, since Eε(t)(t) ≥ 0, it follows from (10) that

ϕ̈(t) + αϕ̇(t) ≤ 2
∣∣∣∣du

dt
(t)

∣∣∣∣2 ,

and we can apply Lemma 2.2 with p(t) = 2|du
dt (t)|2 to conclude that ϕ(t) converges as t → ∞. On the other

hand, since 2Eε(t)(t) ≥ ε(t)|u(t)|2, it follows that

ϕ̈(t) + αϕ̇(t) + ε(t)|u(t)|2 ≤ 2
∣∣∣∣du

dt
(t)

∣∣∣∣2 .

Hence

ϕ̇(t) + αϕ(t) +
∫ t

0

ε(τ)|u(τ)|2dτ ≤ ϕ̇(0) + αϕ(0) + 2
∫ t

0

∣∣∣∣du

dt
(τ)

∣∣∣∣2 dτ.

Since ϕ(t) ≥ 0 and |ϕ̇(t)| = |(du
dt (t), u(t))| ≤ |du

dt (t)||u(t)| → 0 as t → ∞, we deduce that∫ ∞

0

ε(τ)|u(τ)|2dτ ≤ ϕ̇(0) + αϕ(0) + 2
∫ ∞

0

∣∣∣∣du

dt
(τ)

∣∣∣∣2 dτ < ∞,

which would contradict (9) if lim
t→∞ |u(t)| were a strictly positive number. Therefore lim

t→∞ |u(t)| = 0, which
completes the proof of the theorem.

Remark 2.5. Condition (9) means that ε(t) decays slowly enough in order to let every trajectory converge to
the stationary solution u ≡ 0. On the other hand, when ε(t) tends to 0 fast enough, i.e. when

∫ ∞
0 ε(τ)dτ < ∞,

one can adapt to this situation the proof of the autonomous case and the limit solution u∞ may be different
from 0. Similar results have been obtained for non-autonomous first-order in time equations governed by
(sub)gradients of convex functions; in this direction, see [2] for slow-decay results and [12] for fast-decay ones.
We refer the reader to [3] for similar results in the case of some second-order in time equations.

3. Monotone conservative nonlinearity

We are going now to extend the results of the previous section to a class of non-linear second-order in time
equations. More precisely, we consider the infinite dimensional dynamical system generated by a non-linear
equation of the type:

d2u

dt2
(t) + α

du

dt
(t) + Au(t) + f(u(t)) = 0, t > 0, (11)

with initial conditions

u(0) = u0,
du

dt
(0) = v0, (12)

where α > 0, u0 ∈ V , v0 ∈ H , and f : V → H is continuous and monotone in a sense to be made precise. The
hypotheses concerning the spaces V , H and the linear operator A are those of Section 2. On the non-linearity
f , we first suppose that it is conservative, i.e.
(h4) ∃ F ∈ C1(V ; R) such that 〈F ′(u), v〉V ′,V = (f(u), v).
Furthermore, we assume that F is convex, which is equivalent to the monotonicity condition:
(h5) ∀u, v ∈ V, (f(u) − f(v), u − v) ≥ 0.



DAMPED HYPERBOLIC EQUATIONS WITH NON-ISOLATED EQUILIBRIA 547

Therefore, the function Φ : V → R defined by

Φ(v) :=
1
2
a(v, v) + F (v)

satisfies Φ ∈ C1(V ; R) with 〈Φ′(u), v〉V ′,V = a(u, v) + (f(u), v). Moreover, Φ is convex, which amounts to

∀u, v ∈ V, a(u, v − u) + (f(u), v − u) ≤ Φ(v) − Φ(u). (13)

Thus, ṽ ∈ V satisfies Aṽ +f(ṽ) = 0 if and only if Φ(ṽ) = min{Φ(v) : v ∈ V }. Notice that under these conditions
the set of equilibrium points {v ∈ V : Av + f(v) = 0} is a convex subset of V .

We say that the initial-value problem (11, 12) is well-posed when for every u0 ∈ V and v0 ∈ H , there exists
a unique function u(·) ∈ C([0,∞[; V ) ∩ C1([0,∞[; H) which satisfies (12), verifies (11) in the weak sense, and
the corresponding energy function

E(t) :=
1
2

∣∣∣∣du

dt
(t)

∣∣∣∣2 + Φ(u(t))

is absolutely continuous with d
dt [E(t)] ≤ −α|du

dt (t)|2 for a.e. t > 0. It is not our purpose to develop the
well-posedness of (11, 12) here, we only mention that some general sufficient conditions which guarantee this
property are given in [13, 16, 22].

Theorem 3.1. Assume that (h1–h5) hold. Let α > 0 and suppose that the initial-value problem (11, 12) is
well-posed. Given u0 ∈ V and v0 ∈ H, let u(·) ∈ C([0,∞[; V ) ∩ C1([0,∞[; H) be the corresponding solution of
(11, 12). If S := {v ∈ V : Av + f(v) = 0} is nonempty then:

(i) du
dt ∈ L2(0,∞; H) and there exists C ≥ 0 such that E(t) − min Φ ≤ C/t. In particular, lim

t→∞ |du
dt (t)| = 0

and lim
t→∞ Φ(u(t)) = min Φ;

(ii) there exists u∞ ∈ S such that u(t) ⇀ u∞ weakly in V as t → ∞. Furthermore, u(t) → u∞ strongly in V
iff u(t) → u∞ strongly in H.

Proof. The proof of (i) is analogous to the linear case so that we only outline the main arguments. From
d
dt [E(t)] ≤ −α|du

dt (t)|2, it follows that

∫ ∞

0

∣∣∣∣du

dt
(τ)

∣∣∣∣2 dτ ≤ 1
α

[E(0) − min Φ] < ∞.

Let ṽ ∈ S and define

ϕ(t) :=
1
2
|u(t) − ṽ|2.

We have

ϕ̈(t) + αϕ̇(t) = a(u(t), ṽ − u(t)) + (f(u(t)), ṽ − u(t)) +
∣∣∣∣du

dt
(t)

∣∣∣∣2 ,

which together with (13) yield

ϕ̈(t) + αϕ̇(t) ≤ Φ(ṽ) − Φ(u(t)) +
∣∣∣∣du

dt
(t)

∣∣∣∣2 . (14)

Proceeding analogously to the linear case, we rewrite this inequality as

ϕ̈(t) + αϕ̇(t) + E(t) ≤ Φ(ṽ) +
3
2

∣∣∣∣du

dt
(t)

∣∣∣∣2 ,
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and, by computations similar to those used in the previous sections, we deduce that

ϕ(t) +
1
α2

(e−αt − 1 + αt)E(t) ≤ c0 +
1
α2

(e−αt − 1 + αt)Φ(ṽ) + h(t),

where c0 := ϕ(0) + 1
α (1 − e−αt)ϕ̇(0) and h(t) is an appropriate bounded function. In particular, since ϕ(t) ≥ 0

and Φ(ṽ) = min Φ, we have

E(t) ≤ min Φ +
α2(c0 + h(t))
e−αt − 1 + αt

·
Letting t → ∞, we get

lim sup
t→∞

Φ(u(t)) ≤ lim sup
t→∞

[
1
2

∣∣∣∣du

dt
(t)

∣∣∣∣2 + Φ(u(t))

]
= lim sup

t→∞
E(t) ≤ min Φ,

which suffices to ensure that lim
t→∞E(t) = lim

t→∞ Φ(u(t)) = min Φ and, consequently, lim
t→∞ |du

dt (t)| = 0.

Let us turn to the proof of (ii). From (14) and Φ(u(t)) ≥ Φ(ṽ) = min Φ, it follows that

ϕ̈(t) + αϕ̇(t) ≤
∣∣∣∣du

dt
(t)

∣∣∣∣2
and, by Lemma 2.2, ϕ(t) converges as t → ∞. In particular, {u(t)} is bounded in H . On the other hand, since F
is convex, we have F (u) ≥ −b|u|−c for some constants b, c ∈ R. Thus, from the estimate 1

2a(u, u) ≤ Φ(u)+b|u|+c
we deduce that a(u(t), u(t)) is bounded, hence that {u(t)} is bounded in V thanks to (h2). Let û ∈ V be a
cluster point of {u(t) : t → ∞} for the weak topology of V . We have u(tk) ⇀ û weakly in V for some sequence
tk → ∞ and, by the weak lower semi-continuity of Φ, we obtain

Φ(û) ≤ lim inf
k→∞

Φ(u(tk)) = lim
t→∞Φ(u(t)) = min Φ.

Therefore Φ(û) = min Φ, which amounts to û ∈ S. If S is a singleton then {u(t) : t → ∞} admits a unique
cluster point for the weak topology in V , hence u(t) converges weakly as t → ∞. Otherwise, we apply the
following argument due to Opial [19]. Let û1, û2 ∈ S be two cluster points of {u(t) : t → ∞} for the weak
topology of V . Recall that we have shown that for every ṽ ∈ S, the corresponding ϕ(t) = 1

2 |u(t)− ṽ|2 converges
as t → ∞. In particular, li := lim

t→∞ |u(t) − ûi|2 exists for each i = 1, 2. Take a sequence tk → ∞ such that

u(tk) ⇀ û1 weakly in V . Since the injection from V into H is continuous, u(tk) ⇀ û1 weakly in H . From the
identity

|u(t) − û1|2 − |u(t) − û2|2 = |û1 − û2|2 + 2(û1 − û2, û2 − u(t))

we deduce that l1− l2 = −|û1− û2|2. Similarly, if we take tj → ∞ such that u(tj) ⇀ û2 then l1− l2 = |û1− û2|2.
Consequently, |û1 − û2| = 0. This establishes the uniqueness of the cluster point of {u(t) : t → ∞} for the weak
topology of V . Hence u(t) ⇀ u∞ weakly in V as t → ∞ for some u∞ ∈ S.

It remains to prove that if u(t) → u∞ strongly in H then u(t) → u∞ strongly in V . By (h2), we have

µ‖u(t) − u∞‖2 ≤ λ|u(t) − u∞|2 + a(u(t) − u∞, u(t) − u∞),

which we rewrite

µ

2
‖u(t) − u∞‖2 ≤ λ

2
|u(t) − u∞|2 + Φ(u(t)) +

1
2
a(u∞, u∞) − a(u(t), u∞) − F (u(t)).
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Since u(t) ⇀ u∞ weakly in V , we have lim
t→∞ a(u(t), u∞) = a(u∞, u∞). On the other hand, by weak lower semi-

continuity of the continuous convex function F : V → R, we deduce that lim inf
t→∞ F (u(t)) ≥ F (u∞). Therefore

lim sup
t→∞

[
1
2
a(u∞, u∞) − a(u(t), u∞) − F (u(t))

]
≤ −1

2
a(u∞, u∞) − F (u∞) = −Φ(u∞).

Recalling that lim
t→∞ Φ(u(t)) = min Φ and Φ(u∞) = min Φ (since u∞ ∈ S), we obtain

lim sup
t→∞

‖u(t) − u∞‖2 ≤ λ

µ
lim

t→∞ |u(t) − u∞|2,

which completes the proof of the theorem.

Remark 3.2. Theorem 3.1 ensures weak convergence in V under no compactness condition. Of course, as a
consequence of this result, we have that if the trajectory {u(t) : t → ∞} is precompact for the strong topology
of V , then u(t) → u∞ ∈ S strongly in V . Furthermore, according to Theorem 3.1(ii), in order to ensure
strong convergence in V , we need only require the trajectory to be precompact for the strong topology of H .
This is immediate when the injection from V into H is compact because u(t) ⇀ u∞ weakly in V . Another
interesting situation ensuring strong convergence in V is the case where the non-linearity is such that the
following symmetry property holds:

∀v ∈ V, F (−v) = F (v).

Indeed, by a simple adaptation of the arguments in the last part of the proof of Theorem 2.1, where it is
considered the auxiliary function q(t) := |u(t)|2 − |u(t0)|2 − 1

2 |u(t) − u(t0)|2 with t ∈ [0, t0], it is possible to
prove that the convergence of the trajectory holds for the strong topology in H even when the injection from
V into H is not compact; we leave the details to the reader. One question still unanswered is whether strong
convergence holds in the general setting of Theorem 3.1 without any additional condition.

We now turn to the stabilization of a particular equilibrium in this abstract non-linear setting and under a
slow-decay condition. In addition to (h1–h5), let us suppose that
(h6) f(0) = 0.
Observe that under this hypothesis we have

S := {v ∈ V : Av + f(v) = 0} = kerA ∩ {v ∈ V : f(v) = 0}·

Indeed, if ṽ ∈ S then (Aṽ, ṽ) + (f(ṽ), ṽ) = 0. But by (h5) together with (h6), we have (f(v), v) ≥ 0 for all
v ∈ V ; hence (Aṽ, ṽ) = (f(ṽ), ṽ) = 0 and therefore Aṽ = 0.

Theorem 3.3. Let us assume that (h1–h6) hold and let u ∈ C([0,∞[; V ) ∩ C1([0,∞[; H) be a solution of

d2u

dt2
(t) + α

du

dt
(t) + Au(t) + f(u(t)) + ε(t)u(t) = 0, t > 0,

where α > 0 and ε : [0,∞[→ [0,∞[ is a given differentiable function such that for all t ≥ 0, ε̇(t) ≤ 0. Suppose
that the energy

Eε(t)(t) :=
1
2

∣∣∣∣du

dt
(t)

∣∣∣∣2 +
1
2
a(u(t), u(t)) + F (u(t)) +

ε(t)
2

|u(t)|2

is absolutely continuous with d
dt [E(t)] ≤ −α|du

dt (t)|2 + ε̇(t)
2 |u(t)|2 for a.e. t > 0. Under these conditions, we have

du
dt ∈ L2(0,∞; H), there exists C ≥ 0 such that Eε(t)(t) ≤ C/t, du

dt (t) → 0 strongly in H and if
∫ ∞
0 ε(τ)dτ = ∞

then u(t) → 0 strongly in V as t → ∞.
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Proof. We only give the main ideas of the proof. From d
dt [E(t)] ≤ −α|du

dt (t)|2+ ε̇(t)
2 |u(t)|2, it follows that Eε(t)(t)

is non-increasing and ∫ ∞

0

∣∣∣∣du

dt
(τ)

∣∣∣∣2 dτ ≤ 1
α

Eε0(0).

Setting ϕ(t) := 1
2 |u(t)|2, we obtain

ϕ̈(t) + αϕ̇(t) = −a(u(t), u(t)) − (f(u(t)), u(t)) − ε(t)|u(t)|2 +
∣∣∣∣du

dt
(t)

∣∣∣∣2 .

Since for each t > 0 the function Φε(t) : V → R defined by

Φε(t)(v) :=
1
2
a(v, v) + F (v) +

ε(t)
2

|v|2

is convex and Φ′
ε(t)(v) = Av + f(v) + ε(t)v, we have in particular that for every v ∈ V

Φε(t)(v) + (Av + f(v) + ε(t)v, 0 − v) ≤ Φε(t)(0) = F (0).

Observe that Φ′
ε(t)(0) = 0 so that F (0) = Φε(t)(0) = minv∈V Φε(t)(v). Without loss of generality we can assume

that F (0) = 0. Therefore

ϕ̈(t) + αϕ̇(t) + Φε(t)(u(t)) ≤
∣∣∣∣du

dt
(t)

∣∣∣∣2 ,

which may be rewritten

ϕ̈(t) + αϕ̇(t) + Eε(t)(t) ≤ 3
2

∣∣∣∣du

dt
(t)

∣∣∣∣2 .

The standard integration procedure yields

ϕ(t) +
2
α2

(e−αt − 1 + αt)Eε(t)(t) ≤ ϕ(0) +
1
α

(1 − e−αt)ϕ̇(0) + h(t),

where h(t) is a bounded function. Hence Eε(t)(t) ≤ C/t for some constant C ≥ 0 and, since Eε(t)(t) ≥
0, we deduce that lim

t→∞ |du
dt (t)| = lim

t→∞ a(u(t), u(t)) = lim
t→∞ ε(t)|u(t)|2 = lim

t→∞Φε(t)(u(t)) = lim
t→∞Eε(t)(t) = 0.

Furthermore, ϕ(t) converges as t → ∞ by Lemma 2.2. We leave it to the reader to verify that if lim
t→∞ ϕ(t) were

strictly positive, then this would yield a contradiction. Thus lim
t→∞ |u(t)| = lim

t→∞ a(u(t), u(t)) = 0, which gives

lim
t→∞ ‖u(t)‖ = 0 thanks to (h2).

4. Some examples and comments

Let Ω ⊂ R
N be an open bounded set with boundary ∂Ω sufficiently regular. Let us consider the equation

utt + αut − ∆u + f(u) = 0 in Ω×]0,∞[ (15)

where α > 0 and f ∈ C2(R; R). This equation is supplemented with the Neumann boundary condition

∂u

∂n
= 0 on ∂Ω×]0,∞[. (16)

The functional setting of the evolution problem (15, 16) is given by H = L2(Ω), V = H1(Ω) and a(u, v) =∫
Ω ∇u(x) ·∇v(x)dx so that A = −∆ in H1(Ω). Define F (s) :=

∫ s

0 f(r)dr and assume that lim inf |s|→∞
F (s)
s2 > 0,
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and that there exists c1 > 0 such that lim inf |s|→∞
sf(s)−c1F (s)

s2 > 0. We also suppose that |f ′(s)| ≤ c2(1 + |s|γ)
with 0 ≤ γ < ∞ when N = 1, 2, 0 ≤ γ ≤ 2 when N = 3, and γ = 0 when N ≥ 4. For simplicity of notation, we
write F (u) instead of

∫
Ω

F (u(x))dx. The well-posedness of this initial-value problem is a consequence of general
results from dynamical systems theory applied to the equivalent equation utt + αut − ∆u + ηu + fη(u) = 0,
where fη(s) = −ηs + f(s) and η > 0 is small enough, and, moreover {u(t) : t → ∞} is precompact in H1(Ω);
we refer the reader to [22] (Chap. IV, Ex. 4.1). Furthermore, we assume that f is nondecreasing, which ensures
the monotonicity condition (h5). By Theorem 3.1 and Remark 3.2, every solution of (15, 16) strongly converges
in H1(Ω), as t → ∞, toward a solution of

{ −∆u + f(u) = 0 in Ω,
∂u

∂n
= 0 on ∂Ω.

A similar convergence result is valid for the evolution problem:

{
utt + αut − ∆u − λ1u + f(u) = 0 in Ω×]0,∞[,

u = 0 on ∂Ω×]0,∞[,

where λ1 is the first eigenvalue of −∆ in H1
0 (Ω). In this case, we take H = L2(Ω), V = H1

0 (Ω) and a(u, v) =∫
Ω
[∇u(x) · ∇v(x) − λ1u(x)v(x)]dx so that A = −∆ − λ1I.
Observe that in both examples, the kernel of A is one-dimensional so that the set of equilibria can be identified

with an interval of R. This situation has already been studied in [15, 23] for a more general quasi-linear and
monotone damping term g(ut), obtaining some convergence results by a different method relying on topological
arguments. But the dimension of A plays no role in our approach and this allows us to consider other situations.
For instance, −∆ in H1(Ω) can be replaced by the bi-Laplacian operator ∆2 in H2(Ω), and −∆−λ1I in H1

0 (Ω)
can be replaced by ∆2 − µ1I where µ1 is the first eigenvalue of ∆2 in H2

0 (Ω), no matter whether µ1 is simple
or not (see [9] for an example where µ1 is double). Nevertheless, the convergence of the trajectories in theses
cases is a consequence of some general results of Hale and Raugel [14], and Brunovsky and Polacik [8]. Roughly
speaking, it follows from the results in [8] that if the linearized dynamical system at some point z in the ω-
limit set corresponding to an initial data y0 admits 1 as eigenvalue of multiplicity m and z is contained in a
sub-manifold M of equilibria of dimension m, then the whole orbit of y0 converges to z (the case m = 1 was
treated in [14]). In the case of wave-like equations, this result allows the kernel of the linearized operator at
z = (u, 0) to have a dimension higher than one and, moreover, monotonicity of f is not required. On the other
hand, we exploit global monotonicity to establish convergence by energy and functional methods, which are
more elementary than those used in [8, 14].

Another feature of our approach is that it does not require as assumptions neither coercivity of F nor
precompactness conditions on the trajectory (see Rem. 3.2). The latter is interesting in the case where the
physical domain Ω is not bounded. Indeed, the compactness of the injection between the corresponding function
spaces V and H is lost for unbounded domains so that compactness properties of the associated semi-group are
difficult to obtain. This is a major inconvenient for the applying of the standard methods of dynamical system
theory. Without additional assumptions, our result applies under such lack of compactness but only ensures
weak convergence in V .

Of course, other boundary conditions can be considered as spatial-periodicity, and the abstract results apply
also for coupled systems of differential equations.

The authors wish to thank Prof. E. Zuazua and the anonymous referees for some comments which were very useful to
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