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COPLANAR CONTROL OF A SATELLITE AROUND THE EARTH ∗

Jean-Baptiste Caillau
1

and Joseph Noailles
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Abstract. We investigate the minimum time transfer of a satellite around the Earth. Using an
optimal control model, we study the controllability of the system and propose a geometrical analysis
of the optimal command structure. Furthermore, in order to solve the problem numerically, a new
parametric technique is introduced for which convergence properties are established.

Résumé. On s’intéresse au transfert en temps minimal d’un satellite autour de la Terre. Sur la base
d’une modélisation contrôle optimal, on étudie la controlabilité du système et on propose une analyse
de la structure de la commande optimale. En outre, afin de procéder à la résolution numérique du
problème, une nouvelle méthode paramétrique dont on établit des propriétés de convergence est définie.
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Introduction

This paper is devoted to the study of the transfer of a satellite around the Earth [5, 7, 9, 14, 15]. Starting
from a low initial and very eccentric orbit, we aim at reaching a geostationnary terminal one. The transfer is
assumed to be coplanar (in practice, one should also take into account the inclination), and we control the thrust
of the engine in the transfer plane. Since we consider electro-ionic propulsion, the maximum thrust available is
very low (v.g. 0.3 Newton). The state of the spacecraft is, for instance, the couple position-speed, though we
shall see that the equinoctial elements [18] are better suited both from theoretical and numerical point of view.
Contrary to [5,15], the state also comprises the mass of the satellite which is varied during the transfer because
of the fuel consumption. Choosing this more realistic model has consequences on controllability, as well as on
the structure of the control.

The paper is organised as follows: the optimal control formulation of the transfer is detailed in Section 1.
In particular, the two main systems of coordinates on the underlying manifold are described. In Section 2,
controllability of the system is investigated, from where the existence of an optimal control proceeds. Then,
the structure of the optimal controls, that is the characteristics of the switching points, is studied in Section 3
in a geometric control setting. In Section 4, a new parametric approach for time optimal control problems is
presented, the idea being to treat the performance index as a parameter. We focus on convergence properties of
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the associated algorithm under quite general assumptions. Finally, we use this technique to solve numerically
the transfer problem in Section 5. The results are analysed in the light of Section 3 statements.

1. Problem statement

We first describe the dynamics of the system. It involves the state x of the satellite, its mass m, and the
thrust u of the engine:

ẋ = f0(x) + 1/m(u1f1(x) + u2f2(x)) (1.1)
ṁ = −δ|u| (1.2)

where the drift f0 represents the Keplerian action of the Earth. The norm |.| in (1.2) is Euclidean (the variation
of the mass is proportional to the fuel consumption; when δ = 0, we have a constant mass model). The same
convention that finite-dimensional norms |.| are 2-norms will be used throughout the paper. The canonical
Euclidean dot product will be denoted by (.|.), and the transpose of a linear operator A by tA. Equation (1.1)
makes sense form > 0 on the smooth1 open submanifold M4 of R4 (2D transfer) defined in cartesian coordinates
(r1, r2, v1, v2) by:

|r| > 0, |v| <
√

2µ0/|r|. (1.3)

Definition (1.3) ensures that the trajectories remain elliptic (the aforementioned µ0 is the gravitation constant
of the Earth). In cartesian coordinates, the dynamics writes ṙ = v, v̇ = −µ0r/ |r|3 + u/m so that

f0 = v∂r − µ0r/|r|3∂v
f1 = ∂v1 , f2 = ∂v2 .

Another set of coordinates is also available on M4, namely the orbital parameters (P, ex, ey, L) that define the
ellipse osculating to the trajectory (and the position of the spacecraft on it, see [18]): P is the semi-latus rectum,
e = (ex, ey) is the eccentricity vector, and L is the 2π-periodic true longitude (L = ω+w ∈ R/2πZ, ω argument
of the perigee, w true anomaly). Of course, P > 0 and |e| < 1 on M4 because of (1.3). The change of variables
formulas are

r1 = P/W cosL
r2 = P/W sinL
v1 = −

√
µ0/P (ey + sinL)

v2 =
√
µ0/P (ex + cosL)

with

W = 1 + ex cosL+ ey sinL.

Consequently, in these new coordinates,

f0 =
√
µ0/P W 2/P∂L (1.4)

f1 =
√
P/µ0 (sinL∂ex − cosL∂ey) (1.5)

f2 =
√
P/µ0 (2P/W∂P + (cosL+ (ex + cosL)/W )∂ex + (sinL+ (ey + sinL)/W )∂ey) (1.6)

1As usual, by smooth we mean C∞-smooth.
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Figure 1.1. Orbital coordinates of a satellite S defining an ellipse of focus O (center of the
Earth), semi-latus rectum P , eccentricity vector e = (ex, ey), and true longitude L = ω + w.
The axes (r1, r2) define a fixed geocentric frame whereas (u1, u2) define the moving frame in
which the control is expressed.

when expressing the control in the new moving frame of R2 attached to the satellite and forming an angle L
with the canonical one (see Fig. 1.1). The trajectory is assumed to stay in a security zone A ⊂ R×M4 of the
tx-plane defined by

t ≥ 0, P ≥ Π0, |e| ≤ ε0 (1.7)

(Π0 > 0, 0 < ε0 < 1). Similarly, the mass is prescribed to remain greater than the proper mass χ0 of the
satellite (mass without fuel)

m ≥ χ0. (1.8)

These path constraints will only be used for controllability and existence, and will be dropped afterwards. There
are also boundary constraints (lying in the interior of the sets defined by path constraints at t = 0 and t = tf )

x(0) = x0, m(0) = m0, h(x(tf )) = 0 (1.9)

with h a smooth submersion of M4 onto R3, as well as a constraint on the maximum modulus of the thrust

|u| ≤ Tmax.

Again, this is equivalent to u2
1 + u2

2 ≤ T 2
max. Since we are mainly interested in low-thrust transfers, Tmax is

assumed to be very small. The performance index to be minimized is the transfer time,

tf → min .

The optimal trajectory is sought as an absolutely continuous function in W 1,∞
4 ([0, tf ]) = W 1,∞([0, tf ],R4),

together with the mass to be found in W 1,∞([0, tf ]), whereas the control is sought as an essentially bounded
function in L∞2 ([0, tf ]) = L∞([0, tf ],R2). For a given maximum thrust Tmax, the minimum time control problem
will be referred to as (SP )Tmax . It is proved in next section that, no matter how low the thrust may be, the
system remains controllable for a small enough proper mass.
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2. Controllability

We will use in this section the vector field point of view of [16,17], appealing to the formalism of [11]. Let f
be a smooth function defined on the product of an n-dimensional manifold Mn with a control set U into the
tangent bundle TM of Mn such that

f(x, u) ∈ TxM, (x, u) ∈Mn × U.

The family of vector fields F(U) associated with f and U is the subset of T (M) (Lie algebra of smooth
vector fields on Mn) given by F(U) = {f(., u) | u ∈ U}. The Lie bracket of two vector fields X,Y is defined
by [X,Y ] = XY − YX , and the Poisson bracket of two smooth functions f, g on the cotangent bundle T ∗M
of Mn by {f, g} = −

∑n
i=1 ∂xif∂pig−∂pif∂xig (sign convention in canonical coordinates as in [10]). In the case

of control-affine systems with a periodic drift, we have the following controllability result (as a particular case
of Th. 5, Chap. 4 in [11]):

Theorem 2.1. Let F(U) = {X0 +
∑m
i=1 uiXi, u ∈ U}, with Mn a connex manifold; then, under the assump-

tions
(i) X0 is periodic;
(ii) the convex hull of U , co(U), is a neighbourhood of 0;
(iii) Liex({X0, X1, . . . , Xm}) = TxM, x ∈Mn

F(U) is controllable.

The controllability of the transfer system defined in Section 1 follows, provided the satellite is light enough
(for the constant mass model, controllability holds unconditionally):

Proposition 2.2. For any Tmax, there is a proper mass χ0 > 0 of the satellite that makes the system control-
lable.

Proof. We first prove controllability of the constant mass system

ẋ = f0(x) + γ1f1(x) + γ2f2(x) (2.1)
|γ| ≤ Tmax/m

0. (2.2)

Let Q4 be the open submanifold of M4 defined by P > Π0 and |e| < ε0. f0 is periodic on Q4, since the
flow of the drift is the free oscillation of the system which is elliptic (|e| < ε0 < 1). Furthermore, one
can check that Vectx({f1, f2, [f0, f1], [f0, f2]}) = TxQ (see Sect. 3 for explicit computation), which implies
Liex({f0, f1, f2}) = TxQ. As the control set is the closed Euclidean ball of radius Tmax/m

0, controllability
proceeds from Theorem 2.1. The controllability of the original system with varying mass is then established by
setting

m = m0 exp
(
−δ
∫ t

0

|γ|ds
)
> 0

u = mγ

where γ controls (2.1, 2.2). Indeed, ṁ = −δ|u| and |u| ≤ m0Tmax/m
0 = Tmax. If T is the resulting transfer

time, the proper mass χ0 = m0 exp(−δTTmax/m
0) > 0 is obviously such that m ≥ χ0 on [0, T ].

Controllability would be demonstrated exactly in the same way for the 3D model [3]. Furthermore, the result
still holds with an additional constraint on the angle of the control (expressed, as before, in the local frame
attached to the satellite; see Fig. 2.1).

Corollary 2.3. For any Tmax > 0, for any angle constraint defined by α > π/2, the system remains controllable
provided the proper mass is small enough.
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Figure 2.1. The thrust is prescribed to stay in the intersection of the Euclidean ball of radius
Tmax with a cone attached to the moving frame of half angle α and axis u2.

Proof. Indeed, the convex hull of the control set is still a neighbourhood of the origin (here, the satellite)
whenever α is strictly greater than π/2.

Henceforward, we will assume that χ0 is choosen in order to ensure controllability. Existence for (SP )Tmax

easily follows from Proposition 2.2:

Corollary 2.4. For any Tmax > 0, there is an optimal control achieving the minimum time transfer.

Proof. The set of admissible trajectories is not empty, because of controllability; hence, we can restrict ourselves
to consider transfer times less than a fixed positive T , T big enough. Furthermore, in cartesian coordinates,

(x|f(x,m, u)) = (r|v) − µ0(v|r)/|r|3 + (v|u)/m ≤ |x|2 + |x|(µ0(1 + ε0)2/(Π0)2 + Tmax/χ
0)

so there is a positive constant C such that (x|f(x,m, u)) ≤ C(1 + |x|2), from where we get that the trajectories
remain in a fix compact K of R ×M4. As U is a compact Euclidean ball, any admissible triple (x,m, u) is
such that (t, x,m, u) stays into the compact [0, T ]×K × [χ0,m0] × U almost everywhere (the mass is always
decreasing). Finally, since Q̃(x,m) = f̃(x,m,U) is convex – where f̃(x,m, u) is the extended dynamics including
the mass variation, f̃(x,m, u) = (f(x,m, u),−δ|u|) – existence is given by Filippov theorem [6].

Properties of optimal controls are studied in next section.

3. Structure of optimal controls

We consider a minimum time control problem with smooth control-affine and non-autonomous dynamics
(see [1, 2, 16] for autonomous cases with scalar controls)

ẋ = f0(x) + k(t)(u1f1(x) + u2f2(x)) (3.1)

defined on a 4-dimensional manifold M4, with endpoint conditions

x(0) = x0, h(x(tf )) = 0
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(h submersion of M4 onto Rl, l ≤ 3) and a control constraint (defining a control set U ⊂ R2)

|u| ≤ Tmax (Tmax > 0).

As we shall see at the end of the section, the problem (SP )Tmax is a particular case of this one. We make a first
assumption on the dynamics (3.1):

(A3.1) k is monotonous and non-vanishing.
The (time and control dependent) Hamiltonian of the problem is

H(t, y, u) = H0(y) + k(t)(u1H1(y) + u2H2(y))

where Hi(y) = Hfi(y) = pfi(x), i = 0, 1, 2 and y = (x, p) (canonical coordinates on T ∗M); we denote by Y
the vector field on T ∗M associated with H thanks to the canonical symplectic structure of the cotangent
bundle [10]. Then, if (tf , x, u) is solution, Pontryagin maximum principle [11, 16] implies that there exists an
absolutely continuous integral curve y = (x, p) of Y on [0, tf ]

ẏ = Y (t, y, u)

and a positive number p0 such that
(i) (p0, p) 6= 0, and here, because the criterion is tf , p 6= 0 (non-triviality);
(ii) j∗B(p0dt+H(tf )dt−

∑4
i=1 pi(tf )dxi)(tf , x(tf )) = 0 (transversality);

(iii) H(t, y, u) = minv∈U H(t, y, v) on [0, tf ] (minimality).
Hereabove, Bq is the submanifold of R×M4 of dimension q = 4− l + 1 defined by the terminal constraint:

Bq = {(t, x) ∈ R×M4 | t > 0, h(x) = 0}

and j∗B is the pull-back of the canonical embedding jB : Bq → R ×M4. Furthermore, as a function of time,
H is absolutely continuous and

Ḣ = ∂tH(t, y, u). (3.2)

Now, if we define the switching function ψ along the optimal trajectory by

ψ = (H1,H2)

because of the minimality of H, the optimal control verifies (ε denoting the constant sign – by virtue of (A3.1) –
of k)

u = −εTmaxψ/|ψ| (3.3)

whenever ψ does not vanish, that is outside switching points. Our aim is to study these points. Using the
second assumption that

(A3.2) f1 and f2 commute
we have the first

Proposition 3.1. Under assumptions (A3.1, A3.2), ψ is continuously differentiable.

Proof. ψ is absolutely continuous and ψ̇ = (Ḣ1, Ḣ2). Now, we know that

Ḣi = {H,Hi} = H[f,fi] = H[f0,fi] = {H0,Hi}
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since [f, fi] = [f0 + k(t)(u1f1 + u2f2), fi] = [f0, fi], i = 1, 2, in accordance with (A3.2). Consequently, ψ̇ is
continuous and ψ of class C1.

We now require that some of the first Lie brackets of the vector fields defining the dynamics span the whole
tangent space when evaluated at one point; more precisely, we assume

(A3.3) Vectx({f1, f2, [f0, f1], [f0, f2]}) = TxM , x ∈M4.
Then we have the finiteness of switching points:

Proposition 3.2. Under assumptions (A3.1–A3.3), ψ has finitely many zeros.

Proof. Let t̄ be a switching point, ψ(t̄) = 0, and let us suppose that ψ̇(t̄) = 0. Then, at t̄, Hi = {H0,Hi} = 0,
i = 1, 2, and the covector p(t̄) is orthogonal to f1, f2, [f0, f1] and [f0, f2] at x(t̄). By virtue of (A3.3), p(t̄) = 0,
so that p ≡ 0 which contradicts the maximum principle. Thus, ψ̇(t̄) 6= 0 and every switching point is isolated
on the compact [0, tf ]: ψ has only a finite number of zeros.

Concerning the geometry of switchings, we have:

Proposition 3.3. Under assumptions (A3.1–A3.3), any switching is of angle π.

Proof. Let t̄ ∈ [0, tf ] be such that ψ(t̄) = 0. We know by Proposition 3.2 that ψ̇(t̄) 6= 0; since ψ is continuously
differentiable, its graph has a tangent at the origin and the conclusion follows from Figure 3.1.

u(t+)

O

π ψ

u(t-)
-

-

Figure 3.1. Switching of angle π of the optimal control.

Corollary 3.4. Under assumptions (A3.1–A3.3), x, u and p are smooth on [ti, ti+1], for any consecutive switch-
ings ti < ti+1.

Proof. Let ti < ti+1 be two consecutive switchings; thanks to the regularity of the data, y = (x, p) and u – which
is smoothly defined as a function of y outside switchings by u = −εTmax(H1,H2)/|(H1,H2)| – are smooth on
]ti, ti+1[. Now, by virtue of Proposition 3.3, u admits left and right limits at ti, ti+1; therefore, as ẋ = f(t, x, u)
and ṗ = −p∂xf(t, x, u), ẋ and ṗ also do: by finite increments, x and p are of a class C1 on the closed interval
[ti, ti+1]. In as much as the derivatives of order (k+ 1) of x and p only depend on derivatives of u up to order k,
an immediate recurrence concludes the proof.

Finally, we give bounds on the number of consecutive switchings located at special points (that will have a
natural geometric interpretation on the transfer problem, see Cor. 3.7). Namely, if C denotes the finite set of
zeros of ψ, let

C2 = {t ∈ C | f0(x(t)) ∈ Vectx(t)({f1, f2, [f0, f2]})} ·
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Then, under the last two assumptions
(A3.4) Vectx({f0, f1, f2, [f0, f1]}) = TxM , x ∈M4;
(A3.5) p0 > 0 (constraint qualification)

the following is true:

Proposition 3.5. Under assumptions (A3.1–A3.5), if kk̇ ≤ 0, there cannot be consecutive switchings in C2.
If kk̇ > 0, there can be at most three consecutive switchings in C2.

Proof. According to (A3.3), there are smooth functions α1, . . . , α4 in D(M) such that

f0 = α1f1 + α2f2 + α3[f0, f1] + α4[f0, f2].

If t̄ is a switching point, H(t̄) = H0(t̄) = (α3{H0,H1} + α4{H0,H2})(t̄). Moreover, if t̄ ∈ C2, H(t̄) =
α4(t̄){H0,H2}(t̄) = α4(t̄)ψ̇2(t̄). Now, by (3.2), Ḣ = k̇(t)(u1H1 + u2H2), whose sign is constant (opposite
to the sign of kk̇). If kk̇ ≤ 0, H is increasing towards H(tf ) = −p0 (transversality condition of the maximum
principle) and therefore is strictly negative on [0, tf ] by (A3.5). Then, if t̄1 < t̄2 are two consecutive switching
instants in C2, we have

α4(t̄1)α4(t̄2)ψ̇2(t̄1)ψ̇2(t̄2) = H(t̄1)H(t̄2) > 0.

As (A3.4) implies that α4 never vanishes along the optimal trajectory, we conclude that ψ̇2(t̄1)ψ̇2(t̄2) > 0,
which is impossible (t̄1 and t̄2 being two consecutive zeros of ψ2). If kk̇ > 0 (which is more restrictive than
the negation of the case kk̇ ≤ 0), H is strictly decreasing towards H(tf ) = −p0 < 0 (H cannot be constant on
any subinterval of [0, tf ] since, by Prop. 3.2, there is a finite number of switchings) and vanishes at most once.
Suppose this is the case, and let t∗ ∈ [0, tf ] be the zero (otherwise the sign of H is constant and the previous
argument holds), then the former analysis implies there cannot be consecutive switchings in C2 either in [0, t∗[
or in ]t∗, tf ]. As t∗ may belong to C2, there can be up to three consecutive switchings in C2, no more. The proof
is complete.

In order to apply the previous results to the transfer problem, we need to suppose
(I1) any optimal couple (x,m) stays into the interior of the path constraints (1.7, 1.8)

Then, it is enough to eliminate the mass variation by proving:

Proposition 3.6. Under assumption (I1), any optimal control u of (SP )Tmax is such that |u| = Tmax almost
everywhere.

Indeed, this proposition implies that m(t) = m0 − δTmaxt, and the transfer problem falls under the realm of
the previous one by posing k = 1/m.

Proof of Proposition 3.6. The Hamiltonian of the initial problem, including the mass variation, is

H̃ = H0 + 1/m (u1H1 + u2H2)− δpm|u|

with pm adjoint state associated with m. Hence, ṗm = −∂mH̃,

ṗm = 1/m2 (u1H1 + u2H2) (3.4)

which is negative since the control minimizes H̃ on the closed Euclidean ball of radius Tmax: pm decreases
towards pm(tf ) which is zero by transversality. As a result, pm is positive. Then, with the same nota-
tions as before, u = −Tmaxψ/|ψ| whenever ψ does not vanish. Now, ψ is still continuously differentiable,
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and ψ̇ = ({H0,H1}, {H0,H2}). Indeed, taking x̃ = (x,m), p̃ = (p, pm), (x̃, p̃) local coordinates of ỹ ∈
T ∗(M ×R+ \ {0}), H̃i = H

efi
with f̃i(x̃) = (fi(x), 0), i = 0, 1, 2, one verifies

H̃i(ỹ) = Hi(y), [f̃0, f̃i](x̃) = ([f0, fi](x), 0)

so that, along the optimal trajectory,

Ḣi = ˙̃
Hi = {H̃0, H̃i} = {H0,Hi} ·

Then, if ψ(t̄) = 0 and ψ̇(t̄) = 0, by the same argument as in Proposition 3.2, p(t̄) = 0. Moreover, as ṗ =
−p(f ′0 + 1/m (u1f

′
1 + u2f

′
2)), p ≡ 0 by linearity. Then, pm is also identically zero because of (3.4) (plus the fact

that pm(tf ) = 0), that is p̃ ≡ 0 which is impossible (since the criterion is tf ). As before, we conclude that ψ
has only finitely many zeros, and that |u| = Tmax holds almost everywhere.

With the assumption
(I1’) there is constraint qualification on (SP )Tmax

Proposition 3.5 has the following corollary.

Corollary 3.7. Under assumptions (I1–I1’), in the constant mass case (δ = 0) there cannot be consecutive
switchings at the perigee or at the apogee. In the variable mass case (δ > 0), there are at most three consecutive
switchings at the perigee or at the apogee. In any case, switchings are of angle π.

Proof. One can check on (1.4–1.6) that f1 and f2 commute, and that, in orbital coordinates:

[f0, f1] = W 2/P (cosL∂ex + sinL∂ey) (3.5)

[f0, f2] = 2(ex sinL− ey cosL)∂P +W 2/P (− sinL− sinL/W + (ex + cosL)(ex sinL− ey cosL)/W 2)∂ex
+W 2/P (cosL+ cosL/W + (ey + sinL)(ex sinL− ey cosL)/W 2)∂ey −W/P∂L. (3.6)

Since P and W are strictly positive on M4 the assumptions of Propositions 3.3 and 3.5 hold. In particular,
any switching is of angle π. Moreover, at the perigee or at the apogee, the eccentricity vector e = (ex, ey) is
colinear with the position vector so that the determinant ex sinL−ey cosL is zero. Then, by (1.4–1.6) and (3.6),
f0 belongs to the subspace generated by f1 and [f0, f2]: with the previous notations, any switching point located
at the perigee or at the apogee is in C2. Hence, by Theorem 2.1, if δ = 0 (constant mass) then

k(t) = 1/m0, t ∈ [0, tf ]

and we cannot have consecutive switchings at the perigee or at the apogee (kk̇ = 0). If δ > 0 (variable mass)
then

k(t) = 1/(m0 − δTmaxt), t ∈ [0, tf ]

and we have at most three consecutive switchings at the perigee or at the apogee (kk̇ > 0).

As we shall see in Section 5, this result is of practical importance since the numerical experiments demonstrate
that the possible switchings occur at the perigee. A similar analysis can be done on the 3D model [3]. We
depict in the following section the main features of the method used for the numerical computation.

4. Parametric technique

We consider the abstract optimization problem (O) of minimizing a performance index J , defined on a Banach
space Z,

J(z)→ min
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under the constraints

z ∈ Zad ⊂ Z
F (z) = 0

where F is a mapping from Z to another Banach space Y imbedded into a Hilbert space Ŷ . To (O) we associate
the parametric optimization problem (O)β (β is the parameter) consisting in minimizing

1/2‖α‖2
bY → min

under the parametric constraints

(z, α) ∈ Zad × Y (4.1)
F (z) = Sα (4.2)
J(z) = β (4.3)

with S a fixed linear operator on Y. We then define the function φ as the value function of the family (O)β ,
that maps β to the optimal value φ(β) ∈ R of (O)β . Thus, φ(β) gives a measurement of the non-controllability
of the initial problem, when the criterion is enforced to take the value β by (4.3), with respect to the equality
constraints selected by the operator S in (4.2). Then, the optimal value of (O) is the smallest β for which
controllability occurs: actually, if we define the problem (E) of finding the (unique) first root of φ, we have:

Proposition 4.1. The problems (O) and (E) are equivalent in that any solution to one of them induces a
solution to the other.

Proof. If z̄ is solution to (O), β̄ = J(z̄) is solution to (E); indeed, if there is a β̃ strictly smaller than β̄ and
such that φ(β̃) = 0, there is also a pair (z̃, α̃) solution to (O)

eβ . As φ(β̃) = 0, α̃ = 0 and z̃ is admissible for (O),

which contradicts the optimality of z̄ since J(z̃) = β̃ < β̄ = J(β̄). Conversely, if β̄ is solution to (E), φ(β̄) = 0
so it exists z̄ ∈ Z such that (z̄, 0) is solution to (O)β̄ ; then, z̄ is admissible for (O), and furthermore optimal.
Otherwise, one could find an admissible z̃ verifying J(z̃) < J(z̄) and β̃ = J(z̃) would be a root of φ (admissibility
of z̃) strictly smaller than β̄.

Let then (OCP ) be a minimum time problem

tf → min

with dynamics on a smooth n-dimensional open submanifold Mn of Rn

ẋ = f(t, x, u)

with end-point, path and control constraints

x(0) = x0, h(x(tf )) = 0
(t, x) ∈ A, u ∈ U(t, x)

where f and h are smooth functions (h submersion of Mn onto Rl, l ≤ n− 1). We also require that the subsets
A ⊂ R ×Mn and N = {(t, x, u) ∈ R ×Mn × U | (t, x) ∈ A, u ∈ U(t, x)} be closed. (OCP ) is obviously a
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particular case of (O) since, using an homothety to recast the problem on [0, 1], we can set z = (tf , x, u) ∈ Z with

Z = R×X × U , X = W 1,∞
n ([0, 1]), U = L∞m ([0, 1])

Y = L∞n ([0, 1])×Rn ×Rl, Ŷ = L2
n([0, 1])×Rn ×Rl

Zad = {z ∈ Z | tf ≥ 0, (tf t, x) ∈ A, u ∈ U(tf t, x)}

J(z) = tf , F (z) =

 ẋ− tff(tf t, x, u)
x(0)− x0

h(x(1))

 .
Several choices are then possible for the linear operator S in (4.2), depending on the constraint one wants to
lay the emphasis on. For instance, in [15], the constraint on the dynamics was selected and φ(β) was the value
function of the parametric problem with fixed final time (β = tf since the criterion is the free final time)

1/2‖α‖2L2
n
→ min

ẋ = f(t, x, u) + α, t ∈ [0, β]
x(0) = x0, h(x(β)) = 0
(t, x) ∈ A, u ∈ U(t, x)

where α ∈ L∞n ([0, β]), which was added to the right-hand side of the dynamics, acted as a fictitious control.
Here, we make a different choice, emphasizing the role of the terminal constraint h(x(tf )) = 0. As a result, φ(β)
becomes the value function of the problem (OCP )β with fixed final time defined on [0, β] (where the slackness
variable α disappears)

1/2|h(x(β))|2 → min
ẋ = f(t, x, u), t ∈ [0, β]
x(0) = x0

(t, x) ∈ A, u ∈ U(t, x).

The problem obtained is much simpler than the original one since it does not include a constraint on the
terminal state anymore. This peculiarity will allow an easy derivation of properties of the value function φ.
The following basic assumptions on (OCP ) will be usefull, mainly for the existence of measurable selectors and
optimal controls:

(A4.1) the set of admissible triples (tf , x, u) for (OCP ) is non-empty;
(A4.2) the txu-space N is compact;
(A4.3) Q(t, x) = f(t, x, U(t, x)) is convex for any (t, x) in R×Mn.

Under the previous assumptions, we know by measurable selection [6] that, if x ∈ W 1,∞
n ([t1, t2]) verifies ẋ ∈

Q(t, x), (t, x) ∈ A, there is a measurable control u ∈ L∞m ([t1, t2]) such that

ẋ = f(t, x, u), u ∈ U(t, x).

We then make the following structural assumption on (OCP ):
(A4.4) for any (t1, x1) ∈ A and t2 > t1, there is a trajectory x ∈W 1,∞

n ([t1, t2]) such that

ẋ = Q(t, x), (t, x) ∈ A
x(t1) = x1, h(x(t1)) = h(x(t2)).

This assumption means that, from a given point, it is possible to steer the system to any later time by means
of an admissible trajectory without changing the value of the terminal constraint. This property, crucial for the
analysis hereafter, will be straightforwardly fulfilled in the transfer case. We briefly state some basic facts [5]
about φ needed to study the convergence of the method.
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Proposition 4.2. Under assumptions (A4.1–A4.4), φ is finite, decreasing, and zero after its first root β̄.

Proof. Obvious.

Proposition 4.3. Under assumptions (A4.1–A4.4), φ is Lipschitz continuous. Moreover, if there is an optimal
trajectory two times differentiable at t̄f , φ′(β̄) = 0 and φ(β) = O((β − β̄)2) in the neighbourhood of β̄.

Proof. Let β1 and β2 be such that 0 ≤ β1 ≤ β2 ≤ β̄. For any β ∈ [0, β̄], denote (x(., β), u(., β)) a solution
of (OCP )β . Since ẋ(t, β) = f(t, x(t, β), u(t, β)) on [0, β] (a.e.), since f is continous and N is compact, the family
(x(., β))β is equilipschitzian on [0, β̄] (x(., β) is extended to [0, β̄] by constancy and continuity). As the trajec-
tories remain in a fix compact (N is compact, thus A also), the family (1

2 |h(x(., β))|2)β is also equilipschitzian
and we can find a positive constant k independent of β such that:∣∣∣∣12 |h(x(t1, β))|2 − 1

2
|h(x(t2, β))|2

∣∣∣∣ ≤ k|t1 − t2|. (4.4)

Now, since φ is decreasing by the previous proposition, we have

0 ≤ φ(β1)− φ(β2) ≤ 1
2
|h(x(β1, β2))|2 − 1

2
|h(x(β2, β2))|2 (4.5)

for the restriction of (x(., β2), u(., β2)) to [0, β1] is admissible for (OCP )β1 . We get from (4.4) and (4.5) that

|φ(β1)− φ(β2)| ≤ k|β1 − β2|

and φ is Lipschitz. If x̄ is an optimal trajectory two times differentiable at t̄f = β̄, if ψ(β) = 1/2|h(x̄(β))|2,

0 ≤ φ(β)− φ(β̄)
(β − β̄)2

≤ 1/2|h(x̄(β))|2
(β − β̄)2

→ 1/2ψ′′(β̄)

when β → β̄ since ψ(β̄) = ψ′(β̄) = 0 (cf. h(x̄(t̄f )) = 0), which concludes the proof.

The search for the first zero of φ by an iterative process generates a sequence (βk)k converging towards β̄. If
(xk, uk) denotes a solution to (OCP )βk , one may then wish that the last sequence would tend–in some sense–to
a couple (x̄, ū) such that (β̄, x̄, ū) be solution to (OCP ). In this regard, we have the first

Proposition 4.4. Under assumptions (A4.1–A4.4), if (βk)k tends to β̄, up to a subsequence (xk)k converges
uniformly towards an optimal trajectory x̄ of (OCP ) in C0

n([0, β̄]).

Proof. The proof goes along the lines of the classical Filippov theorem. The assumptions ensure that (xk)k is
equilipschitzian, and so equicontinuous (as before, each xk is extended by constancy and continuity on [0, β̄]).
Since the txu-space N is compact, (xk)k is also equibounded: by Ascoli theorem, up to a subsequence, (xk)k
has a uniform limit x̄ in C0

n([0, β̄]). The closure of an equilipschitzian subset being equilipschitzian, x̄ is also
Lipschitz. Besides, since ẋk ∈ Q(t, xk), since N is compact and since Q(t, x) is convex, ˙̄x belongs to Q(t, x̄)
almost everywhere on [0, β̄] (closure Th. 8.6.i of [6]). Of course, (t, x̄) ∈ A because A is closed and x̄(0) = x0 since
xk(0) = x0. Finally, xk(βk)→ x̄(β̄) thanks to the equicontinuity of (xk)k, from where we get that h(x̄(β̄)) = 0
since 1/2|h(xk(βk))|2 = φ(βk)→ 0 (continuity of φ, Prop. 4.3). The trajectory x̄ is then admissible for (OCP ),
and hence optimal by measurable selection.

To obtain a convergence result in the control, we assume that the dynamics can be smoothly inverted in the
following way (notion of système plat in [8]):

(A4.5) there are smooth functions R and S, R(t, x) ∈ L(Rn,Rm) and S(t, x) ∈ Rm, such that whenever
y = f(t, x, u), one has u = R(t, x)y + S(t, x).
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This assumption holds for instance as soon as the dynamics is control-affine, ẋ = f0(t, x)+B(t, x)u, with B(t, x)
an embedding. Then, we have:

Proposition 4.5. Under assumptions (A4.1–A4.5), if (βk)k tends to β̄, up to a subsequence (xk, uk)k converges
towards an optimal couple (x̄, ū) for (OCP ), uniformly in C0

n([0, β̄]) for the state, weakly-∗ in L∞m ([0, β̄]) for the
control (the controls uk being extended by zero outside [0, βk]).

Proof. According to Proposition 4.4, up to a subsequence, (xk)k converges uniformly to an optimal state x̄ of
(OCP ). By measurable selection, there is an essentially bounded ū such that (β̄, x̄, ū) be solution to (OCP ),
and (A4.5) implies that

ū = R(t, x̄) ˙̄x+ S(t, x̄).

As C0
n([0, β̄]) is continuously embedded in the space of distributions, xk → x̄ in D′n(]0, β̄[) so ẋk → ˙̄x ∈ L∞n ([0, β̄])

in the distributions sense. Since ẋk ∈ Q(t, xk), (ẋk)k is bounded in L∞n ([0, β̄]) and ẋk → ˙̄x weakly-∗ with (ẋk)k
equicontinuous. Let then ϕ belong to L1

m([0, β̄]); as R and S are smooth, if χk is the indicator function of [0, βk],
tR(t, xk)ϕχk → tR(t, x̄)ϕ and (S(t, xk)χk|ϕ)→ (S(t, x̄)|ϕ), respectively in L1

n([0, β̄]) and L1([0, β̄]) by Lebesgue
theorem. Hence, S(t, xk)χk → S(t, x̄) weakly-∗ and, (ẋk) being weakly-∗ convergent and equicontinuous,

〈ẋk, tR(t, xk)ϕχk〉L∞,L1 → 〈 ˙̄x, tR(t, x̄)ϕ〉L∞,L1

that is 〈R(t, xk)ẋkχk, ϕ〉L∞,L1 → 〈R(t, x̄) ˙̄x, ϕ〉L∞,L1. Since, according to (A4.5), the extension of uk to [0, β̄] is
equal to (R(t, xk)ẋk + S(t, xk))χk, we conclude that uk → ū weakly-∗ in L∞m ([0, β̄]).

Finally, if

(A4.6) U(t, x) = U(t) and, for β < β̄, any optimal trajectory x(., β) of (OCP )β is interior to the path
constraint (t, x) ∈ A

Pontryagin maximum principle holds (see Sect. 3), and to any optimal couple (x(., β), u(., β)) of (OCP )β we can
associate a unique absolutely continuous adjoint state p(., β) and a positive number p0 such that, in particular,
the transversality condition hereafter is true:

p(β, β) = p0
th(x(β, β))h′(x(β, β)). (4.6)

For β < β̄, there is constraint qualification (p0 > 0) and we can take p0 = 1 in (4.6) (p0 = 0 would imply p ≡ 0).
Then we also get a convergence result on the adjoint state:

Proposition 4.6. Under assumptions (A4.1–A4.6), if (βk)k tends to β̄, (pk)k converges uniformly towards 0
in C0

n([0, β̄]) (with pk extended by constancy and continuity on [0, β̄]).

Proof. The adjoint state pk verifies the linear equation ṗk = −pk∂xf(t, xk, uk) on [0, βk]; since f is smooth on
the compact txu-space N , there is a constant K such that |∂xf(t, xk, uk)| ≤ K, and

‖pk‖∞ ≤ exp(Kβ̄)|pk(βk)|. (4.7)

Now, pk(βk) = th(xk(βk))h′(xk(βk)) by (4.6), and h(xk(βk))→ 0 since φ(βk)→ 0: (h′(xk(βk)))k being bounded,
pk(βk)→ 0 which yields the desired conclusion according to (4.7).

In order to apply these results to the transfer problem, we only need to check assumptions (A4.4, A4.5).
Indeed, we saw in Section 2 that the system is controllable (Prop. 2.2) and that the admissible trajectories
remain in a fix compact subset (Cor. 2.4). Moreover, we dropped the path constraints (Assump. (I1)) so (A4.6)
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is valid. Now, concerning (A4.4), the verification is obvious: in orbital coordinates, the terminal constraints
defined by (1.9) write

P (tf ) = P f , ex(tf ) = efx, ey(tf ) = efy (4.8)

in such a way that the final longitude Lf is free; as a consequence, from any point, one can always reach a later
time without altering the value of the terminal constraint by means of a zero control, since then the system
oscillates freely (elliptic motion) and only the unconstrained longitude is changed. As for assumption (A4.5),
if y = f0(x) + 1/m(u1f1(x) + u2f2(x)), clearly enough u = m( tB(x)B(x))−1 tB(x)(y − f0(x)) with B = [f1 f2].
As a conclusion, all the previous results hold under the sole assumption (I1) on (SP )Tmax . In particular,
Proposition 4.3 implies that φ has a quadratic behaviour in the neighbourhood of the solution since, by virtue
of Corollary 3.4, any optimal trajectory is smooth near t̄f . The corresponding numerical results are presented
in the last section.

5. Numerical results

In accordance with Section 3 results (Prop. 3.6), we use the non-autonomous formulation for (SP )Tmax where
the mass is explicitly given by m(t) = m0 − δTmaxt. Then, φ is the value function of the parametric problem
(SP )βTmax

(once recast on [0, 1], path constraints omitted by virtue of (I1))

1/2|h(x(1))|2 → min
ẋ = βf(βt, x, u), t ∈ [0, 1]
x(0) = x0

|u| ≤ Tmax

with f(t, x, u) = f0(x)+B(x)u/m(t), B = [f1 f2]. In order to apply a Newton algorithm to find the first zero of φ,
we need C1 regularity (Prop. 4.3 only gives Lipschitz continuity). This is achieved using the sensitivity analysis
techniques of [12, 13]. The idea is to construct an extremal family and to ensure (local) optimality by second
order sufficient conditions. Let then β0 be a parameter in ]0, β̄[, and let (x0, u0) ∈W 1,∞

n ([0, 1])× L∞m ([0, 1]) be
a solution to (SP )β0

Tmax
. As before, the first order necessary condition holds in qualified form, and there is an

absolutely continuous adjoint state p0 such that (minimization of Hamiltonian)

u0 = −Tmax
t(p0B(x0))/|p0B(x0)| (5.1)

since the Hamiltonian is H(t, y, u, β) = βp(f0(x) + B(x)u/m(t)). Of course, (5.1) is valid only when p0B(x0)
does not vanish, that is outside switching points again. By the same argument as in Section 3, we can prove
that there are finitely many such points. Moreover, in accordance with Corollary 3.7, the numerical results at
the end of the section will show that, in practice, there is at most one switching on the solution of the initial
problem (SP )Tmax . Nevertheless, we need to assume more here, namely that for any parameter β in ]0, β̄[,
(SP )βTmax

has an optimal control such that
(I2) u(., β) is continuous.

Then, u0 is even smooth and y0 = (x0, p0) is solution of the two-point boundary value problem (BV P )β0 defined
by the Hamilton equations (plus transversality)

ẋ = ∂pH(t, x, p, u(x, p), β0) (5.2)
ṗ = −∂xH(t, x, p, u(x, p), β0) (5.3)

x(0) = x0, p(1) = th(x(1))h′(x(1)) (5.4)

with u(x, p) = −Tmax
t(pB(x))/|pB(x)|. As a result, one can find an open neighbourhood V of (p0(0), β0)

such that the maximal flow ϕ(t, y, β) of ẏ = ξ(t, y, β) – with ξ the vector field defined by the right-hand side
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of (5.2, 5.3), ξ(t, y, β) = (∂pH(t, y, u(y), β),−∂xH(t, y, u(y), β)) – is defined on an open subset containing [0, 1]×
{x0}×V . On this neighbourhood, (BV P )β is equivalent to the shooting equation: find a covector p0 such that

S(p0, β) = 0

with S(p0, β) = b(ϕ(1, x0, p0, β)) (and where b(y) = p− th(x)h′(x) is the boundary condition corresponding to
the second part in (5.4)). Finally, under the last two assumptions that, for any β in ]0, β̄[,

(I3) ∂pS(p(0, β), β) belongs to GLn(R);
(I4) the symmetric Riccati equation (5.5, 5.6) below has a bounded solution on [0, 1] (compare [12,13])

Q̇ = −QA(t, β)− tA(t, β)Q +QB(t, β)Q− C(t, β) (5.5)

((Rf −Q(1))v|v) ≥ 0, v ∈ R4 (5.6)
A(t, β) = ∂xξ1(t, y(t, β), β)
B(t, β) = ∂pξ1(t, y(t, β), β)
C(t, β) = ∂xξ2(t, y(t, β), β)

Rf =
[

I3 0
0 0

]
(I3 identity matrix of order 3)

we have continuous differentiability and we are able to give the derivative of φ in closed form:

Proposition 5.1. Under assumptions (I1–I4), φ is C1 on ]0, β̄[ and φ′(β) = H(1, β)/β.

For a detailed numerical verification of assumptions (I3, I4) in the constant mass case, see [5]. Here, we
extend the explicit formula for φ′ to the more realistic variable mass case. We will use the following fact: if
W (β) is the value function of the abstract parametric optimization problem (Õ)β (parameter β in a Banach
space B) with equality constraints

J(z, β)→ min
F (z, β) = 0

with J : Z × B → R and F : Z × B → Y differentiable, Z, B and Y Banach spaces, if for any β in an open
neighbourhood V of β0 the problem admits a solution z(β) together with a multiplier λ(β) in Y ′ such that
(KKT) conditions hold (in qualified form)

∂zL(z(β), λ(β), β) = 0, ∂λL(z(β), λ(β), β) = 0 (5.7)
L(z, λ, β) = J(z, β) + 〈λ, F (z, β)〉Y′,Y

and such that the mappings β 7→ z(β) and β 7→ λ(β) are differentiable, W is differentiable and one has by
reverse differentiation [4]:

W ′(β) = ∂βL(z(β), λ(β), β). (5.8)

Proof of Proposition 5.1. Thanks to assumption (I2), the control constraint is everywhere active in order that
the parametric problem (SP )βTmax

becomes a particular case of (Õ)β , as one can see by setting z = (x, u) ∈ Z
together with

Z = X × U , X = W 1,∞
n ([0, 1]), U = L∞m ([0, 1])

Y = L∞n ([0, 1])×Rn × L∞([0, 1])

J(z, β) =
1
2
|h(x(1))|2, F (z, β) =

 ẋ− βf(βt, x, u)
x(0)− x0

1/2(|u|2 − T 2
max)

 .



254 J.B. CAILLAU AND J. NOAILLES

Hence, we just need to check the assumptions of the sensitivity result of [13] on (SP )βTmax
to apply (5.8). Let

then β0 be an arbitrary point in ]0, β̄[. (SP )β0
Tmax

has a solution (x0, u0), together with an absolutely continuous
adjoint state p0 by virtue of (I1). The control u0 defined by (5.1) is smooth (Assump. (I2)), and if Ĥ is the
augmented Hamiltonian

Ĥ(t, x, p, u, µ, β) = βp(f0(x) +B(x)u/m(t)) + 1/2µ(|u|2 − T 2
max)

with µ scalar multiplier associated with the inequality control constraint 1/2(|u|2 − T 2
max) ≤ 0, one has

∇uĤ(t, x0, p0, u0, µ0, β0) = 0 with

µ0 = β0|p0B(x0)|/(m(t)Tmax) ≥ 0.

As a result, µ0 is smooth and (I2) implies that strict complementarity holds: µ0 > 0 on [0, 1]. Furthermore,

∇2
uuĤ(t, x0, p0, u0, µ0, β0) = µ0I2 (I2 identity matrix of order 2)

is positive definite on [0, 1] and the strict Legendre-Clebsch condition is also fulfilled. Finally, with (I3)
and (I4), all the assumptions required for the sensitivity analysis are valid, and there is an open neighbourhood
of β0 such that the mappings β 7→ z(β) and β 7→ λ(β) are defined and differentiable, with

λ(β) = (−p(., β), p(0, β), µ(., β)) ∈W 1,∞
n ([0, 1])× (Rn)∗ × L∞([0, 1])

so that (KKT) conditions in the form (5.7) hold. Consequently, φ is differentiable in this neighbourhood, and

φ′(β) = λ(β)∂βF (z(β), β) = 〈p(., β), f(βt, x(., β), u(., β)) + βt∂tf(βt, x(., β), u(., β))〉(L∞)′,L∞

=
∫ 1

0

∂βH(t, β)dt

thanks to the regularity of the adjoint state (p(., β) ∈ W 1,∞
n ([0, 1]) ⊂ L2

n([0, 1]) ⊂ (L∞n ([0, 1]))′). Now, along
the optimal trajectory for β,

d/dt(tH) = H + tḢ

= H + t∂tH

= β∂βH

so that φ′(β) = H(1, β)/β. Since this is true in the neighbourhood of any point of ]0, β̄[, the result holds on the
whole open interval.

The numerical resolution is threefold. At the higher level, we use a continuation technique [3] on the maximum
thrust: if T cmax is the current thrust, if β̄c is the first root of φ – where φ(β) is the value function of (SP )βT cmax

–,
the value β̄c is used to initialize the resolution for the next thrust T+

max (of course, T+
max < T cmax and β̄+ > β̄c).

For a given Tmax, (SP )Tmax is solved by seeking the first root of φ (parametric approach of Sect. 4), taking
advantage of the closed expression of φ′ provided by Proposition 5.1 for the Newton search. At the inner level,
the evaluation of each φ(β) is performed by single shooting on the auxiliary problem (SP )βTmax

. The numerical
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values for the boundary conditions in (1.9) and (4.8) are:

P 0 = 11625 km P f = 42165 km
e0
x = 0.75 efx = 0
e0
y = 0 efy = 0
L0 = π rad δ = 0.05112 km−1 s
m0 = 1500 kg µ0 = 398600.47 km3 s−2.

The optimal times computed by the method are given in Table 1. They are about 5% smaller than those given by
the constant mass model (compare [5]). The use of the orbital coordinates, much more stable numerically than
the cartesian ones (the former arise as integrals of the unperturbed motion), makes the computation possible
down to 0.3 Newton.

Table 1. Optimal times for the coplanar transfer (variable mass model).

Tmax (Newtons) tf (Hours) Tmax (Newtons) tf (Hours)

60 14.732 2 420.10

24 34.133 1.4 597.92

12 69.294 1 839.97

9 93.187 0.7 1195.7

6 141.64 0.5 1685.2

3 278.98 0.3 2838.4

Since the value function φ is evaluated by single shooting on (SP )βTmax
, we may happen to find a local

minimum of this auxiliary problem. Actually, we possibly only have an upper estimation of φ, and the root β̄
provided by the method may be not the first but just a local minimum of the original problem (SP )Tmax .
Nevertheless, there is still a fundamental difference with straightforward single shooting that does not treat the
performance index value specifically: the Newton steps on the equation φ(β) = 0 provide an ordered search on
the cost functional, so that too coarse local minima are avoided. Moreover, the method proves to be more robust
numerically than the shooting procedure since it is less sensitive to the initializations of both the optimal time
and the adjoint state. Indeed, thanks to the additional level of iteration above shooting, unaccurate shooting
resolutions are permitted during the first Newton steps. Then, although the evaluation of φ gets distorted, the
approximation available turns to be sufficient to initialize convergence. As the iterates get closer to the zero,
the auxiliary shooting steps are more and more precise, and the desired accuracy is achieved at the solution.
The optimal controls and trajectories for 60, 3 and 0.3 Newtons are given in Figures 5.1 and 5.2.

Concerning switchings, for low thrusts (v.g. 3 and 0.3 Newtons) the controls present rapid variations which
could be switchings. Now, the numerical experiments show that all these strong variations happen to be precisely
located at the perigee (see Figs. 5.1 and 5.2): as a consequence, because of the previous study (Cor. 3.7), at
most three of them can actually be switchings (variable mass case). Indeed, whatever the thrust, we can check
numerically that there is always one and only one point (located at the perigee) where ψ is numerically very close
to zero, in accordance with Section 3 results. Since this evaluation of ψ comes from an approximate computation
of the optimal trajectory, it is not possible to decide whether there is or not a switching. Nevertheless, this
observation makes us believe that, in practice, either there is no switching at all, or exactly one located at
perigee.

Conclusion

We have reviewed the main geometric properties of the coplanar transfer of a satellite towards a geostationnary
orbit, namely controllability and structure of optimal controls. We have also studied the convergence properties
of the parametric method used to solve the control problem numerically. Among the coordinates available to
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Figure 5.1. For 60 and 3 Newtons, the trajectories are given on the right (the arrows represent the
control). On the left, for both thrusts the two top graphs represent respectively µ, Lagrange multiplier
associated with the constraint on the modulus of the control, and ψ, the switching function. The other
two graphs are the components of the control (solid line), u1 and u2, plus the plot of ex sinL− ey cosL
(dashed line) which vanishes at the perigee or the apogee. Whereas for 60 Newtons (strong thrust) the
control is everywhere smooth, for 3 Newtons (low thrust) one can observe that at the point t̄ ' 0.35
where ψ is almost passing through the origin, the satellite is exactly at the perigee. Besides, this point
is situated at the change of phase (end of the semi-latus rectum increase, beginning of the eccentricity

correction).

describe the mass varying system, the orbital parameters have proved to be the good choice of coordinates [16]
since they provide not only the natural geometric framework to investigate the structure of the control, but
also a numerically relevant change of variables. A challenging extension of this study would be to work on
even more realistic hybrid (3D) models, taking into account additional continuous path and control constraints
(eclipse phenomenons [7], etc.), together with logical constraints (v.g. satellites with several engines working in
exclusive mode).
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