We consider the exact controllability of a hybrid system consisting of an elastic beam, clamped at one end and attached at the other end to a rigid antenna. Such a system is governed by one partial differential equation and two ordinary differential equations. Using the HUM method, we prove that the hybrid system is exactly controllable in an arbitrarily short time in the usual energy space.
Mots-clés : hybrid system, weak solution, exact controllability, singular control, unique continuation
@article{COCV_2001__6__183_0, author = {Rao, Bopeng}, title = {Exact boundary controllability of a hybrid system of elasticity by the {HUM} method}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {183--199}, publisher = {EDP-Sciences}, volume = {6}, year = {2001}, mrnumber = {1816072}, zbl = {0962.93048}, language = {en}, url = {http://www.numdam.org/item/COCV_2001__6__183_0/} }
TY - JOUR AU - Rao, Bopeng TI - Exact boundary controllability of a hybrid system of elasticity by the HUM method JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2001 SP - 183 EP - 199 VL - 6 PB - EDP-Sciences UR - http://www.numdam.org/item/COCV_2001__6__183_0/ LA - en ID - COCV_2001__6__183_0 ER -
Rao, Bopeng. Exact boundary controllability of a hybrid system of elasticity by the HUM method. ESAIM: Control, Optimisation and Calculus of Variations, Tome 6 (2001), pp. 183-199. http://www.numdam.org/item/COCV_2001__6__183_0/
[1] Boundary controllability of a hybrid system consisting in two flexible beams connected by a point mass. SIAM J. Control Optim. 36 (1998) 1576-1595. | Zbl
and ,[2] Exact controllability and stabilization of a vibration string with an interior point mass. SIAM J. Control Optim. 33 (1995) 1357-1391. | Zbl
and ,[3] Exact boundary controllability of a hybrid system of elasticity. Arch. Rational Mech. Anal. 103 (1988) 193-236. | Zbl
and ,[4] Stabilization of a hybrid system of elasticity by feedback boundary damping. Ann. Mat. Pura Appl. 152 (1988) 281-330. | Zbl
and ,[5] Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Vol. I. Masson, Paris (1988). | Zbl
,[6] Exact controllability, stabilizability, and perturbations for distributed systems. SIAM Rev. 30 (1988) 1-68. | Zbl
,[7] Dynamical boundary control for elastic Al plates of general shape. SIAM J. Control Optim. 31 (1993) 983-992. | Zbl
and ,[8] Boundary controllability of a linear hybrid system arising in the control noise. SIAM J. Control Optim. 35 (1987) 1614-1637. | Zbl
and ,[9] Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York (1983). | MR | Zbl
,[10] Stabilisation du modèle SCOLE par un contrôle frontière a priori borné. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993) 1061-1066. | Zbl
,[11] Uniform stabilization and exact controllability of Kirchhoff plates with dynamical boundary controls.
,[12] Uniform stabilization of a hybrid system of elasticity. SIAM J. Control Optim. 33 (1995) 440-454. | Zbl
,[13] Contrôlabilité exacte frontière d'un système hybride en élasticité par la méthode HUM. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 889-894. | Zbl
,[14] Compact sets in the space . Ann. Mat. Pura Appl. (IV) CXLVI (1987) 65-96. | Zbl
,[15] Feedback stabilization of a linear system in Hilbert space with an a priori bounded control. Math. Control Signals Systems (1989) 265-285. | Zbl
,[16] Contrôlabilité exacte en un temps arbitrairement petit de quelques modèles de plaques, in Lions [5], 465-491.
,