@article{COCV_2000__5__501_0, author = {Lopes, Orlando}, title = {Nonlocal variational problems arising in long wave propagation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {501--528}, publisher = {EDP-Sciences}, volume = {5}, year = {2000}, mrnumber = {1799328}, zbl = {0969.35046}, language = {en}, url = {http://www.numdam.org/item/COCV_2000__5__501_0/} }
TY - JOUR AU - Lopes, Orlando TI - Nonlocal variational problems arising in long wave propagation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2000 SP - 501 EP - 528 VL - 5 PB - EDP-Sciences UR - http://www.numdam.org/item/COCV_2000__5__501_0/ LA - en ID - COCV_2000__5__501_0 ER -
Lopes, Orlando. Nonlocal variational problems arising in long wave propagation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 5 (2000), pp. 501-528. http://www.numdam.org/item/COCV_2000__5__501_0/
[1] Sobolev Spaces. Academic Press ( 1975). | MR | Zbl
,[2] Concentration-Compactness and stability-wave solutions to nonlocal equations. Contemp. Math. 221, AMS ( 1999) 1-30. | MR | Zbl
,[3] Sufficient conditions for stability of solitary-wave solutions of model equations for long waves. Phys. D 24 ( 1987) 343-366. | MR | Zbl
, and ,[4] Model equations for waves in stratified fluids. Proc. Roy. Soc. London Ser. A 453 ( 1997) 1233-1260. | MR | Zbl
, and ,[5] Interpolation Spaces. Springer-Verlag, New-York/Berlin ( 1976). | MR | Zbl
and ,[6] Variational Methods in Mathematical Physics. Springer-Verlag ( 1992). | MR | Zbl
and ,[7] Minimum Action Solutions of Some Vector Field Equations. Comm. Math. Phys. 96 ( 1984) 97-113. | MR | Zbl
and ,[8] Stability and instability of some nonlinear dispersive solitary waves in higher dimension. Proc. Roy. Soc. Edinburgh Sect. A 126 ( 1996) 89-112. | MR | Zbl
,[9] Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories, Part I. Comm. Partial Differential Equations 17 ( 1992) 1051-1110. | MR | Zbl
and ,[10] Orbital Stability of Standing waves for Some Nonlinear Schrödinger Equations. Comm. Math. Phys. 85 ( 1982) 549-561. | MR | Zbl
and ,[11] Action Minima among to a class of Euclidean Scalar Field Equations. Comm. Math. Phys. 58 ( 1978) 211-221. | MR
, and ,[12] On the ground states of vector nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 65 ( 1996) 57-79. | Numdam | MR | Zbl
and ,[13] Comments on Nonlinear Wave Equations as Models for Elementary Particles. J. Math. Phys. 5, 9 ( 1964) 1252-1254. | MR
,[14] Stability of Solitary Waves in the Presence of Symmetry I. J. Funct. Anal. 74 ( 1987) 160-197. | MR | Zbl
, and ,[15] Estimates for translation invariant operators in Lp spaces. Acta Math. 104 ( 1960) 93-140. | MR | Zbl
,[16] Introduction à la théorie des points critiques et applications aux problèmes elliptiques. Springer, Heidelberg ( 1993). | MR | Zbl
,[17] Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 21 ( 1968) 467-490. | MR | Zbl
,[18] Stability and instability of fourth-order solitary waves. J. Dynam. Differential Equations 10 ( 1998) 151-188. | Zbl
,[19] Existence and uniqueness of minimizing solutions of Choquard's nonlinear equation. Stud. Appl. Math. 57 ( 1977) 93-105. | Zbl
,[20] The Concentration-Compactness Principle in the Calculus of Variations. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 ( 1984) Part I 109-145, Part II 223-283. | Numdam | Zbl
,[21] Solutions of Hartree-Fock Equations for Coulomb Systems. Comm. Math. Phys. 109 ( 1987) 33-97. | Zbl
,[22] Radial symmetry of minimizers for some translation and rotation invariant functionals. J. Differential Equations 124 ( 1996) 378-388. | Zbl
,[23] Sufficient conditions for minima of some translation invariant functionals. Differential Integral Equations 10 ( 1997) 231-244. | MR | Zbl
,[24] A Constrained Minimization Problem with Integrals on the Entire Space. Bol. Soc. Brasil Mat. (N.S.) 25 ( 1994) 77-92. | MR | Zbl
,[25] Variational Systems Defined by Improper Integrals, edited by L. Magalhaes et al., International Conference on Differential Equations. World Scientific ( 1998) 137-153. | MR | Zbl
,[26] Variational problems defined by integrals on the entire space and periodic coefficients. Comm. Appl. Nonlinear Anal. 5 ( 1998) 87-120. | MR | Zbl
,[27] On the stability of KdV multi-solitons. Comm. Pure. Appl. Math. 46 ( 1993) 867-902. | MR | Zbl
and ,[28] Sur quelques généralizations de l'équation de Korteweg-de Vries. J. Math. Pure Appl. (9) 58 ( 1979) 21-61. | MR | Zbl
,[29] Interpolation Theory, Functions Spaces, Differential Operators. North-Holland, Amsterdam ( 1978). | MR | Zbl
,[30] Liapunov Stability of Ground States of Nonlinear Dispersive Evolution Equations. Comm. Pure Appl. Math. 39 ( 1986) 51-68. | MR | Zbl
,[31] Existence and dynamic stability of solitary wave solution of equations arising in long wave propagation. Comm. Partial Differential Equations 12 ( 1987) 1133-1173. | MR | Zbl
,