@article{COCV_2000__5__445_0, author = {Durand, Sylvain and Malgouyres, Fran\c{c}ois and Roug\'e, Bernard}, title = {Image deblurring, spectrum interpolation and application to satellite imaging}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {445--475}, publisher = {EDP-Sciences}, volume = {5}, year = {2000}, mrnumber = {1789371}, zbl = {0946.68150}, language = {en}, url = {http://www.numdam.org/item/COCV_2000__5__445_0/} }
TY - JOUR AU - Durand, Sylvain AU - Malgouyres, François AU - Rougé, Bernard TI - Image deblurring, spectrum interpolation and application to satellite imaging JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2000 SP - 445 EP - 475 VL - 5 PB - EDP-Sciences UR - http://www.numdam.org/item/COCV_2000__5__445_0/ LA - en ID - COCV_2000__5__445_0 ER -
%0 Journal Article %A Durand, Sylvain %A Malgouyres, François %A Rougé, Bernard %T Image deblurring, spectrum interpolation and application to satellite imaging %J ESAIM: Control, Optimisation and Calculus of Variations %D 2000 %P 445-475 %V 5 %I EDP-Sciences %U http://www.numdam.org/item/COCV_2000__5__445_0/ %G en %F COCV_2000__5__445_0
Durand, Sylvain; Malgouyres, François; Rougé, Bernard. Image deblurring, spectrum interpolation and application to satellite imaging. ESAIM: Control, Optimisation and Calculus of Variations, Tome 5 (2000), pp. 445-475. http://www.numdam.org/item/COCV_2000__5__445_0/
[1] Analysis of bounded variation methods for ill-posed problems. Inverse Problems 10 ( 1994) 1217-1229. | MR | Zbl
and ,[2] Digital signal processing. Tech. Englewood Cliffs, NJ: Prentice-Hall ( 1977).
and ,[3] Sojournes and Extremes os Stochastic Processes. Wadsworth, Reading, MA ( 1989). | Zbl
,[4] Nonlinear Approximation and the Space BV (ℝ 2) (preprint). | Zbl
, , and ,[5] Shape Preserving Local Histogram Modification. IEEE Trans. Image Process. 8 ( 1999).
, , and ,[6] Nonlinear Wavelet Image Processing: Variational Problems, Compression and Noise Removal through Wavelet Shrinkage. Preprint CEREMADE No. 9728, September 1997, short version in: IEEE Trans. Image Process. 7 ( 1998) 319-335. | MR | Zbl
, , and ,[7] Restauration de données par minimisation de la variation Total et variantes d'ordre supérieur, in Proc. of GRETSI. Juan-les-Pins, France ( 1995).
and ,[8] Image recovery via Total Variation minimisation and related problems. Numer. Math. 76 ( 1997) 167-188. IEEE Trans. Image Process. | MR | Zbl
and ,[9] Cosine Transform Based Preconditioners for Total Variation Deblurring. UCLA Math Department CAM Report 95-23 ( 1995).
, and ,[10] Translation-invariant de-noising. Technical Report 475, Standford University ( 1995). | Zbl
and ,[11] Wavelet analysis and signal processing. In Wavelets and their Applications, edited by B. Ruskai et al, Boston, Jones and Barlett ( 1992) 153-178. | MR | Zbl
, and ,[12] Image reconstruction and restoration: Overview of Common Estimation Structures and Problems. IEEE Trans. Acoust. Speech Signal Process. 37 ( 1989).
,[13] Minimax Estimation via wavelet shrinkage. Tech. Report, Dept. of Stat., Stanford Univ. ( 1992).
and ,[14] Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 ( 1994) 425-455. | MR | Zbl
and ,[15] Measure theory and fine properties of functions. Studies in advanced mathematics, CRS Press Inc. ( 1992). | MR | Zbl
and ,[16] Total Variation Based interpolation, in Proc. of European Signal Processing Conference (EUSIPCO-98), Vol. 3 ( 1998) 1741-1744.
and ,[17] Wavelet threshold estimators for data with correlated noise. Technical report, Standford University ( 1994).
and ,[18] A View of Three Decades of Linear Filtering Theory. IEEE Trans. Inform. Theory IT20 ( 1974). | MR | Zbl
,[19] Restauration minimax et déconvolution dans un base d'ondelettes miroirs. Thèse, École Polytechnique ( 1999).
,[20] Restauration d'images par paquets d'ondelettes. 16e Colloque GRETSI ( 1997).
, and ,[21] Image Deconvolution in Mirror Wavelet Bases. IEEE, ICIP'98.
, and ,[22] Prolate Speroidal Wave Functions, Fourier Analysis and Uncertainty -III: The Dimension of the Space of Essentially Time and Band-Limited Signals. The Bell systeme technical Journal ( 1962). | MR | Zbl
and ,[23] On Gabor's contribution to image enhancement. PR. 27 ( 1994) 1-8.
, and ,[24] A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Patern Analysis and Machine Intelligence II ( 1989). | Zbl
,[25] A Wavelet Tour of Signal Processing. Academic Press ( 1998). | MR | Zbl
,[26] Ondelettes et opérateurs, Hermann ( 1990) Tome 1. | Zbl
,[27] Les ondelettes, algorithmes et applications. Armand Colin ( 1992).
,[28] Local strong homogeneity of a regularized estimator. SIAM (to appear). | MR | Zbl
,[29] Remarks about space-frequency and space-scaleto clean and restore noisy images in satellite frameworks. Progress in wavelets and applications, edited by Y.Meyer and S. Roques Frontières. Gif-sur-Yvette 1993(Proceedings Toulouse conference). | Zbl
,[30] Fixed Chosen Noise Restauration (FCNR). IEEE 95 Philadelphia (U.S.A.).
,[31] Nonlinear Total Variation based noise removal algorithms. Physica D 60 ( 1992259-268. | MR | Zbl
, and ,