@article{COCV_2000__5__425_0, author = {Manservisi, Sandro and Heusermann, Knut}, title = {On some optimal control problems for the heat radiative transfer equation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {425--444}, publisher = {EDP-Sciences}, volume = {5}, year = {2000}, mrnumber = {1778394}, zbl = {0952.49035}, language = {en}, url = {http://www.numdam.org/item/COCV_2000__5__425_0/} }
TY - JOUR AU - Manservisi, Sandro AU - Heusermann, Knut TI - On some optimal control problems for the heat radiative transfer equation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2000 SP - 425 EP - 444 VL - 5 PB - EDP-Sciences UR - http://www.numdam.org/item/COCV_2000__5__425_0/ LA - en ID - COCV_2000__5__425_0 ER -
%0 Journal Article %A Manservisi, Sandro %A Heusermann, Knut %T On some optimal control problems for the heat radiative transfer equation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2000 %P 425-444 %V 5 %I EDP-Sciences %U http://www.numdam.org/item/COCV_2000__5__425_0/ %G en %F COCV_2000__5__425_0
Manservisi, Sandro; Heusermann, Knut. On some optimal control problems for the heat radiative transfer equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 5 (2000), pp. 425-444. http://www.numdam.org/item/COCV_2000__5__425_0/
[1] On some control problems in fluid mechanics. Theoret. Computational Fluid Dynamics 1 ( 1990) 303-326. | Zbl
and ,[2] Sobolev Spaces. Academic Press, New York ( 1975). | MR | Zbl
,[3] Optimal Control. Consultants Bureau, New York ( 1987). | MR | Zbl
, and ,[4] The finite element method with Lagrangian multipliers. Numer. Math. 16 ( 1973) 179-192. | MR | Zbl
,[5] An extension theorem for the space Hdiv. Appl. Math. Lett. (to appear). | Zbl
and ,[6] Consistent approximations for an optimal design problem. Report 98005 Labotatoire d'analyse numérique, Paris, France ( 1998).
, and ,[7] Introduction to Numerical Linear Algebra and Optimization. Cambridge University, Cambridge ( 1989). | MR | Zbl
,[8] The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam ( 1978). | MR | Zbl
,[9] Numerical methods for unconstrained optimisation and non-linear equations. Prentice-Hall Inc., New Jersey ( 1983). | Zbl
and ,[10] The Finite Element Method for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, New York ( 1986). | MR | Zbl
and ,[11] Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control. SIAM J. Numer. Anal. (to appear). | MR | Zbl
and ,[12] The velocity tracking problem for for Navier-Stokes flows with bounded distributed control. SIAM J. Control Optim. (to appear). | MR | Zbl
and ,[13] Finite Element Approximation for Optimal Shape Design. Wiley, Chichester ( 1988). | MR | Zbl
and ,[14] Optimal design for heat radiative transfer systems. Comput. Methods Appl. Mech. Engrg. (to appear).
and ,[15] Fundamentals of Heat and Mass Transfer. Wiley, New York ( 1990).
and ,[16] Radiative heat transfer. McGraw-Hill, New York ( 1993).
,[17] Optimal shape design in fluid mechanics. Thesis, University of Paris ( 1976).
,[18] On optimal design in fluid mechanics. J. Fluid. Mech. 64 ( 1974) 97-110. | MR | Zbl
,[19] Optimal shape design for elliptic systems. Springer, Berlin ( 1984). | MR | Zbl
,[20] Hilbert Space Methods for Partial Differential Equations. Electron. J. Differential Equations ( 1994) http://ejde.math.swt.edu/mono-toc.html | MR | Zbl
,[21] Introduction to shape optimisation: Shape sensitivity analysis. Springer, Berlin ( 1992). | Zbl
and ,[22] Stefan-Boltzmann radiation on Non-convex Surfaces. Math. Methods Appl. Sci. 20 ( 1997) 47-57. | MR | Zbl
,[23] Finite Element Approximations for a Beat Radiation Problem. Report 7/ 1995, Dept. of Mathematics, University of Jyväskylä ( 1995).
,[24] Fundamental Principles of the Theory of Extremal Problems. Wiley, Chichester ( 1986). | MR | Zbl
,