@article{COCV_2000__5__313_0, author = {Teel, Andrew R. and Praly, Laurent}, title = {A smooth {Lyapunov} function from a class-$\mathcal {KL}$ estimate involving two positive semidefinite functions}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {313--367}, publisher = {EDP-Sciences}, volume = {5}, year = {2000}, mrnumber = {1765429}, zbl = {0953.34042}, language = {en}, url = {http://www.numdam.org/item/COCV_2000__5__313_0/} }
TY - JOUR AU - Teel, Andrew R. AU - Praly, Laurent TI - A smooth Lyapunov function from a class-$\mathcal {KL}$ estimate involving two positive semidefinite functions JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2000 SP - 313 EP - 367 VL - 5 PB - EDP-Sciences UR - http://www.numdam.org/item/COCV_2000__5__313_0/ LA - en ID - COCV_2000__5__313_0 ER -
%0 Journal Article %A Teel, Andrew R. %A Praly, Laurent %T A smooth Lyapunov function from a class-$\mathcal {KL}$ estimate involving two positive semidefinite functions %J ESAIM: Control, Optimisation and Calculus of Variations %D 2000 %P 313-367 %V 5 %I EDP-Sciences %U http://www.numdam.org/item/COCV_2000__5__313_0/ %G en %F COCV_2000__5__313_0
Teel, Andrew R.; Praly, Laurent. A smooth Lyapunov function from a class-$\mathcal {KL}$ estimate involving two positive semidefinite functions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 5 (2000), pp. 313-367. http://www.numdam.org/item/COCV_2000__5__313_0/
[1] A separation principle for the control of a class of nonlinear systems, in Proc. of the 37th IEEE Conference on Decision and Control Tampa, FL ( 1998) 855-860.
and ,[2] Differential Inclusions: Set-valued Maps and Viability Theory. Springer-Verlag, New York ( 1984). | MR | Zbl
and ,[3] Set-valued Analysis. Birkhauser, Boston ( 1990). | MR | Zbl
and ,[4] Lyapunov and Lagrange stability: Inverse theorems for discontinuous systems. Math. Control Signals Systems 11 ( 1998) 101-128. | MR | Zbl
and ,[5] On the existence of a function of Lyapunov in the case of asymptotic stability in the large. Prikl. Mat. Mekh. 18 ( 1954) 345-350. | MR | Zbl
and ,[6] Asymptotic stability and smooth Lyapunov functions. J. Differential Equations 149 ( 1998) 69-114. | MR | Zbl
, and ,[7] Nonsmooth Analysis and Control Theory. Springer ( 1998). | MR | Zbl
, , and ,[8] Subgradient criteria for monotonicity, the Lipschitz condition, and convexity. Canad. J. Math. 45 ( 1993) 1167-1183. | MR | Zbl
, and ,[9] A converse Lyapunov theorem for a class of dynamical systems which undergo switching, IEEE Trans. Automat. Control 44 ( 1999) 751-764. | MR | Zbl
and ,[10] Multivalued Differential Equations. Walter de Gruyter, Berlin ( 1992). | MR | Zbl
,[11] On certain questions in the theory of optimal control. SIAM J. Control 1 ( 1962) 76-84. | MR | Zbl
,[12] Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers ( 1988). | MR | Zbl
,[13] Stability of Motion. Springer-Verlag ( 1967). | MR | Zbl
,[14] Singular perturbations on the infinite interval. Trans. Amer. Math. Soc. 123 ( 1966) 521-535. | MR | Zbl
,[15] On the inversion of Ljapunov's second theorem on stability of motion. Amer. Math. Soc. Trans. Ser. 2 24 ( 1956) 19-77. | EuDML | Zbl
,[16] Stability Analysis of Nonlinear Systems. Marcel Dekker, Inc. ( 1989). | MR | Zbl
, and ,[17] On Massera type converse theorem in terms of two different measures. Bull. U.M.I. 13 ( 1976) 293-301. | MR | Zbl
and ,[18] A smooth converse Lyapunov theorem for robust stability. SIAM J. Control Optim. 34 ( 1996) 124-160. | MR | Zbl
, and ,[19] The general problem of the stability of motion. Math. Soc. of Kharkov, 1892 (Russian). [English Translation: Internat. J. Control 55 ( 1992) 531-773]. | MR | Zbl
,[20] On the question of the reciprocal of Lyapunov's theorem on asymptotic stability. Prikl. Mat. Mekh. 18 ( 1954) 129-138. | Zbl
,[21] On Liapounoff's conditions of stability. Ann. of Math. 50 ( 1949) 705-721. | MR | Zbl
,[22] Contributions to stability theory. Ann. of Math. 64 ( 1956) 182-206. (Erratum: Ann. of Math. 68 ( 1958) 202.) | MR | Zbl
,[23] Design of stable control systems subject to parametric perturbations. Avtomat. i Telemekh. 10 ( 1978) 5-16. | MR | Zbl
,[24] Lyapunov functions that specify necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems I. Avtomat. i Telemekh. ( 1986) 63-73. | MR | Zbl
and ,[25] Lyapunov functions that specify necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems II. Avtomat. i Telemekh. ( 1986) 5-14. | MR | Zbl
and ,[26] Criteria of asymptotic stability of differential and difference inclusions encountered in control theory. Systems Control Lett. 13 ( 1989) 59-64. | MR | Zbl
and ,[27] Stability of processes with respect to two measures. Prikl. Mat. Mekh. ( 1960) 988-1001. | Zbl
,[28] Theory of Functions of a Real Variable. Vol. 1. Frederick Ungar Publishing Co. ( 1974). | MR | Zbl
,[29] Discontinuous feedback and universal adaptive stabilization, in Control of Uncertain Systems, edited by D. Hinrichsen and B. Martensson. Birkhauser, Boston ( 1990) 245-258. | MR | Zbl
,[30] Comments on integral variants of ISS. Systems Control Lett. 34 ( 1998) 93-100. | MR | Zbl
,[31] A notion of input to output stability, in Proc. European Control Conf. Brussels ( 1997), Paper WE-E A2, CD-ROM file ECC958.pdf.
and ,[32] Notions of input to output stability. Systems Control Lett. 38 ( 1999) 235-248. | MR | Zbl
and ,[33] Lyapunov characterizations of input to output stability. SIAM J. Control Optim. (to appear). | MR | Zbl
and ,[34] Dynamical Systems and Numerical Analysis. Cambridge University Press, New York ( 1996). | MR | Zbl
and ,[35] Tools for semiglobal stabilization by partial state and output feedback. SIAM J. Control Optim. 33 ( 1995) 1443-1488. | MR | Zbl
and ,[36] A Lyapunov description of stability in control systems. Nonlinear Anal. 13 ( 1989) 63-74. | MR | Zbl
,[37] Prolongations and stability analysis via Lyapunov functions of dynamical polysystems. Math. Systems Theory 20 ( 1987) 215-233. | MR | Zbl
and ,[38] Lyapunov functions and stability of dynamical polysystems. Math. Systems Theory 19 ( 1987) 333-354. | MR | Zbl
, and ,[39] Stability and stabilization of motion: Research approaches, results, distinctive characteristics. Avtomat. i Telemekh. ( 1993) 3-62. | MR | Zbl
,[40] Smoothing derivatives of functions and applications. Trans. Amer. Math. Soc. 139 ( 1969) 413-428. | MR | Zbl
,[41] Stability Theory by Lyapunov's Second Method. The Mathematical Society of Japan ( 1966). | MR | Zbl
,[42] Functional Analysis, 2nd Edition. Springer Verlag, New York ( 1968). | MR | Zbl
,