Optimal control approach in inverse radiative transfer problems : the problem on boundary function
ESAIM: Control, Optimisation and Calculus of Variations, Tome 5 (2000), pp. 259-278.
@article{COCV_2000__5__259_0,
     author = {Agoshkov, Valeri I. and Bardos, Claude},
     title = {Optimal control approach in inverse radiative transfer problems : the problem on boundary function},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {259--278},
     publisher = {EDP-Sciences},
     volume = {5},
     year = {2000},
     mrnumber = {1765426},
     zbl = {0957.49018},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2000__5__259_0/}
}
TY  - JOUR
AU  - Agoshkov, Valeri I.
AU  - Bardos, Claude
TI  - Optimal control approach in inverse radiative transfer problems : the problem on boundary function
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2000
SP  - 259
EP  - 278
VL  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/COCV_2000__5__259_0/
LA  - en
ID  - COCV_2000__5__259_0
ER  - 
%0 Journal Article
%A Agoshkov, Valeri I.
%A Bardos, Claude
%T Optimal control approach in inverse radiative transfer problems : the problem on boundary function
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2000
%P 259-278
%V 5
%I EDP-Sciences
%U http://www.numdam.org/item/COCV_2000__5__259_0/
%G en
%F COCV_2000__5__259_0
Agoshkov, Valeri I.; Bardos, Claude. Optimal control approach in inverse radiative transfer problems : the problem on boundary function. ESAIM: Control, Optimisation and Calculus of Variations, Tome 5 (2000), pp. 259-278. http://www.numdam.org/item/COCV_2000__5__259_0/

[1] V.A. Ambartsumyan, Scattering and absorption of light in planetary atmospheres. Uchen. Zap. TsAGI 82 ( 1941), in Russian.

[2] S. Chandrasekhar, Radiative Transfer. New York ( 1960). | MR | Zbl

[3] J.-L. Lions, Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris ( 1968). | MR | Zbl

[4] V.I. Lebedev and V.I. Agoshkov, The Poincaré-Steklov Operators and their Applications in Analysis. Dept. of Numerical Math. of the USSR Academy of Sciences, Moscow ( 1983), in Russian. | MR | Zbl

[5] V.I. Agoshkov, Generalized solutions of transport equations and their smoothness properties. Nauka, Moscow ( 1988), in Russian. | MR

[6] V.I. Agoshkov, Reflection operators and domain decomposition methods in transport theory problems. Sov. J. Numer. Anal. Math. Modelling 2 ( 1987) 325-347. | MR | Zbl

[7] V.I. Agoshkov, On the existence of traces of functions in spaces used in transport theory problems. Dokl. Akad. Nauk SSSR 288 ( 1986) 265-269, in Russian. | MR | Zbl

[8] V.S. Vladimirov, Mathematical problems of monenergetic particle transport theory. Trudy Mat. Inst. Steklov 61 ( 1961), in Russian. | MR

[9] G.I. Marchuk, Design of Nuclear Reactors. Atomizdat, Moscow ( 1961), in Russian.

[10] V.V. Sobolev, Light Scattering in Planetary Atmospheres. Pergamon Press, Oxford, U.K. ( 1973).

[11] G.I. Marchuk and V.I. Agoshkov, Reflection Operators and Contemporary Applications to Radiative Transfer. Appl. Math. Comput. 80 ( 1995) 1-19. | MR | Zbl

[12] V.I. Agoshkov, Domain decomposition methods in problems of hydrodynamics. I. Problem plain circulation in ocean. Moscow: Department of Numerical Mathematics, Preprint No. 96 ( 1985) 12, in Russian. | MR | Zbl

[13] V.I. Agoshkov, Domain decomposition methods and perturbation methods for solving some time dependent problems of fluid dynamics, in Proc. of First International Interdisciplinary Conference. Olympia-91 ( 1991). | Zbl

[14] V.I. Agoshkov, Control theory approaches in: data assimilation processes, inverse problems, and hydrodynamics. Computer Mathematics and its Applications, HMS/CMA 1 ( 1994) 21-39. | MR | Zbl

[15] Ill-posed problems in natural Sciences, edited by A.N. Tikhonov. Moscow, Russia - VSP, Netherlands ( 1992). | MR

[16] A.L. Ivankov, Inverse problems for the nonstationary kinetic transport equation. In [15]. | Zbl

[17] A.I. Prilepko, D.G. Orlovskii and I.A. Vasin, Inverse problems in mathematical physics. In [15]. | Zbl

[18] Yu.E. Anikonov, New methods and results in multidimensional inverse problems for kinetic equations. In [15]. | Zbl

[19] E.C. Titchmarsh, Introduction to the Theory of Fourier Integral. New York ( 1937). | JFM

[20] C. Bardos, Mathematical approachfor the inverse problem in radiative media ( 1986), not published.

[21] K.M. Case, Inverse problem in transport theory. Phys. Fluids 16 ( 1973) 16-7-1611. | MR

[22] L.P. Niznik and V.G. Tarasov, Reverse scattering problem for a transport equation with respect to directions.Preprint, Institute of Mathematics, Academy Sciences of the Ukrainian SSR ( 1980). | MR

[23] K.K. Hunt and N.J. Mccormick, Numerical test of an inverse method for estimating single-scattering parameters from pulsed multiple-scattering experiments. J. Opt. Soc. Amer. A. 2 ( 1985).

[24] N.J. Mccormick, Recent Development in inverse scattering transport method. Trans. Theory Statist. Phys. 13 ( 1984) 15-28. | MR

[25] C. Bardos, R. Santos and R. Sentis, Diffusion approximation and the computation of critical size. Trans. Amer. Math. Soc. 284 ( 1986) 617-649. | MR | Zbl

[26] C. Bardos, R. Caflish and B. Nicolaenko, Different aspect of the Milne problem. Trans. Theory Statist. Phys. 16 ( 1987) 561-585. | MR | Zbl

[27] V.P. Shutyaev, Integral renection operators and solvability of inverse transport problem, in Integral equations in applied modelling. Kiev: Inst. of Electrodynamics, Academy of Sciences of Ukraine, Vol. 2 ( 1986) 243-244, in Russian.

[28] V.I. Agoshkov and C. Bardos, Inverse radiative problems: The problem on boundary function. CMLA, ENS de Cachan, Preprint No. 9801 ( 1998).

[29] V.I. Agoshkov and C. Bardos, Inverse radiative problems: The problem on the right-hand-side function. CMLA, ENS de Cachan, Preprint No. 9802 ( 1998).

[30] V.I. Agoshkov and C. Bardos, Optimal control approach in 3D-inverse radiative problem on boundary function (to appear).

[31] V.I. Agoshkov, C. Bardos, E.I. Parmuzin and V.P. Shutyaev, Numerical analysis of iterative algorithms for an inverse boundary transport problem (to appear). | MR | Zbl

[32] S.I. Kabanikhin and A.L. Karchevsky, Optimization methods of solving inverse problems of geoelectric, In [15]. | Zbl

[33] F. Coron, F. Golse and C. Sulem, A Classification of Well-Posed Kinetic Layer Problems. Comm. Pure Appl. Math. 41 ( 1988) 409-435. | MR | Zbl

[34] R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, CEA. Masson, Tome 9. | Zbl

[35] R. Glowinski and J.-L. Lions, Exact and approximate controllability for distributed parameter systems. Acta Numer. ( 1994) 269-378. | MR | Zbl