Viability kernels and control sets
ESAIM: Control, Optimisation and Calculus of Variations, Tome 5 (2000), pp. 175-185.
@article{COCV_2000__5__175_0,
     author = {Szolnoki, Dietmar},
     title = {Viability kernels and control sets},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {175--185},
     publisher = {EDP-Sciences},
     volume = {5},
     year = {2000},
     mrnumber = {1744611},
     zbl = {0940.93009},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2000__5__175_0/}
}
TY  - JOUR
AU  - Szolnoki, Dietmar
TI  - Viability kernels and control sets
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2000
SP  - 175
EP  - 185
VL  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/COCV_2000__5__175_0/
LA  - en
ID  - COCV_2000__5__175_0
ER  - 
%0 Journal Article
%A Szolnoki, Dietmar
%T Viability kernels and control sets
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2000
%P 175-185
%V 5
%I EDP-Sciences
%U http://www.numdam.org/item/COCV_2000__5__175_0/
%G en
%F COCV_2000__5__175_0
Szolnoki, Dietmar. Viability kernels and control sets. ESAIM: Control, Optimisation and Calculus of Variations, Tome 5 (2000), pp. 175-185. http://www.numdam.org/item/COCV_2000__5__175_0/

[1] J.-P. Aubin, Viability Theory. Birkhäuser ( 1991). | MR | Zbl

[2] F. Colonius AND W. Kliemann, Infinite time optimal control and periodicity. Appl. Math. Optim. 20 ( 1989) 113-130. | MR | Zbl

[3] F. Colonius AND W. Kliemann, Some aspects of control systems as dynamical systems. J. Dynam. Differential Equations 5 ( 1993) 469-494. | MR | Zbl

[4] F. Colonius AND W. Kliemann, The Dynamics of Control. Birkhäuser ( 2000) to appear. | MR | Zbl

[5] M. Dellnitz AND A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors. Numer. Math. 75 ( 1997) 293-317. | MR | Zbl

[6] G. Häckl, Reachable Sets, Control Sets and Their Computation. Dissertation, Universität Augsburg, "Augsburger Mathematische Schriften Band 7" ( 1996). | MR | Zbl

[7] W. Kliemann, Qualitative Theorie Nichtlinearer Stochastischer Systeme. Dissertation, Universität Bremen ( 1980).

[8] H. NijmeijerAND A.J. Van Der Schaft, Nonlinear Dynamical Control Systems. Springer-Verlag ( 1990). | MR | Zbl

[9] P. Saint-Pierre, Approximation of the viability kernel. Appl. Math. Optim. 29 ( 1994) 187-209. | MR | Zbl

[10]P. Saint-Pierre, Set-valued numerical analysis for optimal control and differential games ( 1998) to appear. | Zbl

[11] D. Szolnoki, Berechnung von Viabilitätskernen. Diplomarbeit, Institut für Mathematik, Universität Augsburg, Augsburg ( 1997).

[12] A. Uppal, W.H. Ray AND A.B. Poore, On the dynamic behavior of continuous stirred tank reactors. Chem. Engrg. Sci. 19 ( 1974) 967-985.