@article{COCV_2000__5__157_0, author = {Anita, Sebastian and Barbu, Viorel}, title = {Null controllability of nonlinear convective heat equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {157--173}, publisher = {EDP-Sciences}, volume = {5}, year = {2000}, mrnumber = {1744610}, zbl = {0938.93008}, language = {en}, url = {http://www.numdam.org/item/COCV_2000__5__157_0/} }
TY - JOUR AU - Anita, Sebastian AU - Barbu, Viorel TI - Null controllability of nonlinear convective heat equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2000 SP - 157 EP - 173 VL - 5 PB - EDP-Sciences UR - http://www.numdam.org/item/COCV_2000__5__157_0/ LA - en ID - COCV_2000__5__157_0 ER -
Anita, Sebastian; Barbu, Viorel. Null controllability of nonlinear convective heat equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 5 (2000), pp. 157-173. http://www.numdam.org/item/COCV_2000__5__157_0/
[1] Sobolev Spaces. Academic Press, New York ( 1975). | MR | Zbl
,[2] Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, Boston ( 1993). | MR | Zbl
,[3] Exact controllability of the superlinear heat equation. Appl. Math. Optim., to appear. | MR | Zbl
,[4] Convexity and Optimization in Banach Spaces. D. Reidel Publ. Company, Dordrecht ( 1986). | MR | Zbl
, ,[5] Nonlinear parabolic equations involving measures as initial conditions. J. Math. Pures Appl. 62 ( 1983) 73-97. | MR | Zbl
and ,[6] Nonlinear Functional Analysis. Springer-Verlag, Berlin ( 1985). | MR | Zbl
,[7] Approximate controllability of the semilinear heat equation, Proceedings Royal Soc. Edinburgh 125 A ( 1995) 31-61. | MR | Zbl
, and ,[8] Null controllability of the semilinear heat equation. ESAIM Control. Optim. Calc. Var. 2 ( 1997) 87-107. | Numdam | MR | Zbl
,[9] The cost of approximate controllability for heat equations: The linear case. Adv. Diff. Equations, to appear. | MR | Zbl
and ,[10] Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. | Numdam | MR | Zbl
and ,[11] Controllability of Evolution Equations. RIM Seoul National University, Korea, Lecture Notes Ser. 34 ( 1996). | MR | Zbl
and ,[12] On Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, preprint #98 - 46. University of Tokyo, Grade School of Mathematics, Komobo, Tokyo, Japan ( 1998). | MR
and ,[13] Linear and Quasilinear Equations of Paraboic Type. Nauka, Moskow ( 1967). | Zbl
, and ,[14] Contrôle exact de l'équation de la chaleur. Comm. Partial Differential Equations 30 ( 1995) 335-357. | MR | Zbl
and ,[15] Controle des systèmes distribués singuliers, MMI 13. Gauthier-Villars ( 1983). | MR | Zbl
,[16] Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris ( 1968). | MR | Zbl
and ,[17] Approximate controllability of the semilinear heat équation: boundary control, in Computational Sciences for the 21st Century, M.O. Bristeau et al, Eds. John Wiley & Sons ( 1997) 738-747. | Zbl
,[18] Approximate controllability for semilinear heat equations with globally Lipschitz nonlinearities. Control Cybernet., to appear. | MR | Zbl
,