@article{COCV_1999__4__83_0, author = {Khapalov, Alexander}, title = {Approximate controllability and its well-posedness for the semilinear reaction-diffusion equation with internal lumped controls}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {83--98}, publisher = {EDP-Sciences}, volume = {4}, year = {1999}, mrnumber = {1680760}, zbl = {0926.93007}, language = {en}, url = {http://www.numdam.org/item/COCV_1999__4__83_0/} }
TY - JOUR AU - Khapalov, Alexander TI - Approximate controllability and its well-posedness for the semilinear reaction-diffusion equation with internal lumped controls JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 1999 SP - 83 EP - 98 VL - 4 PB - EDP-Sciences UR - http://www.numdam.org/item/COCV_1999__4__83_0/ LA - en ID - COCV_1999__4__83_0 ER -
%0 Journal Article %A Khapalov, Alexander %T Approximate controllability and its well-posedness for the semilinear reaction-diffusion equation with internal lumped controls %J ESAIM: Control, Optimisation and Calculus of Variations %D 1999 %P 83-98 %V 4 %I EDP-Sciences %U http://www.numdam.org/item/COCV_1999__4__83_0/ %G en %F COCV_1999__4__83_0
Khapalov, Alexander. Approximate controllability and its well-posedness for the semilinear reaction-diffusion equation with internal lumped controls. ESAIM: Control, Optimisation and Calculus of Variations, Tome 4 (1999), pp. 83-98. http://www.numdam.org/item/COCV_1999__4__83_0/
[1] Observation for the one-dimensional heat equation. Stadia Math. 48 ( 1973) 291-305. | MR | Zbl
,[2] Uniqueness result for Stokes equations and their consequences in linear and nonlinear problems. ESAIM: Control Optimization and Calculus of Variations 1 ( 1996) 267-302. | Numdam | MR | Zbl
,[3] Contrôlabilité approchée de l'équation de la chaleur semi-linéaire. C.R. Acad. Sci. Paris 315 ( 1992) 807-812. | MR | Zbl
, and ,[4] Approximate controllability for the semilinear heat equation. Proc. Royal Soc. Edinburg 125A ( 1995) 31-61. | MR | Zbl
, and ,[5] Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations. Quarterly of Appl. Mathematics ( 1974) 45-69. | MR | Zbl
and ,[6] Approximate controllability of the semilinear heat equation via optimal control. JOTA (to appear).
and ,[7] Controllability and of evolution equations. Lect. Note Series 34, Res. Inst. Math., GARC, Seoul National University ( 1996). | MR | Zbl
and ,[8] On unique continuation of the solutions of the parabolic equation from a curve. Control and Cybernetics, Quarterly 25 ( 1996) 451-463. | MR | Zbl
,[9] Some aspects of the asymptotic behavior of the solutions of the semilinear heat equation and approximate controllability. J. Math. Anal. Appl. 194 ( 1995) 858-882. | MR | Zbl
,[10] Linear and quasi-linear equations of parabolic type. AMS, Providence, Rhode Island ( 1968).
, and ,[11] Remarques sur la contrôlabilité approchée, in Proc. of "Jornadas Hispano-Francesas sobre Control de Sistemas Distribuidos", University of Málaga, Spain (October 1990). | MR | Zbl
,[12] Entire functions and Müntz-Szász type approximation. Trans. AMS 157 ( 1971) 23-37. | MR | Zbl
and ,[13] Observation and prediction for the heat equation. J. Math. Anal. Appl. 28 ( 1969) 303-312. | MR | Zbl
and ,[14] Global Solutions of Reaction-Diffusion Systems. Lecture Notes in Mathematics No. 1072 (Springer-Verlag, Berlin, 1984). | MR | Zbl
,[15] Controllability for partial differential equations of parabolic type. SIAM J. Cont. 12 ( 1974) 389-400. | MR | Zbl
,[16] The coefficient map for certain exponential sums. Neder. Akad. Wetemsch. Indag. Math. 48 ( 1986) 463-478. | MR | Zbl
,[17] Unique continuation for some evolution equations. J. Diff. Equat. 66 ( 1987) 118-139. | MR | Zbl
and ,[18] Étude des sommes d'exponentielles réelles. Actualités Sci. Indust. No. 959 (Hermann, Paris, 1943). | MR | Zbl
,[19] A note on approximate controllability for semilinear one-dimensional heat equation. Appl. Math. Optim. 8 ( 1982) 275-285. | MR | Zbl
,[20] Finite dimensional null controllability for the semilinear heat equation. J. Math. Pures Appl. 76 ( 1997) 237-264. | MR | Zbl
,[21] Approximate controllability for semilinear heat equations with globally Lipschitz nonlinearities. Prep. del Depart, de Matematica Applicada, MA-UCM 1998-035, Universidad Complutense de Madrid ( 1998). | MR
,