Control of networks of Euler-Bernoulli beams
ESAIM: Control, Optimisation and Calculus of Variations, Tome 4 (1999), pp. 57-81.
@article{COCV_1999__4__57_0,
     author = {Dekoninck, Bertrand and Nicaise, Serge},
     title = {Control of networks of {Euler-Bernoulli} beams},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {57--81},
     publisher = {EDP-Sciences},
     volume = {4},
     year = {1999},
     mrnumber = {1680764},
     zbl = {0922.93005},
     language = {en},
     url = {http://www.numdam.org/item/COCV_1999__4__57_0/}
}
TY  - JOUR
AU  - Dekoninck, Bertrand
AU  - Nicaise, Serge
TI  - Control of networks of Euler-Bernoulli beams
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 1999
SP  - 57
EP  - 81
VL  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/COCV_1999__4__57_0/
LA  - en
ID  - COCV_1999__4__57_0
ER  - 
%0 Journal Article
%A Dekoninck, Bertrand
%A Nicaise, Serge
%T Control of networks of Euler-Bernoulli beams
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 1999
%P 57-81
%V 4
%I EDP-Sciences
%U http://www.numdam.org/item/COCV_1999__4__57_0/
%G en
%F COCV_1999__4__57_0
Dekoninck, Bertrand; Nicaise, Serge. Control of networks of Euler-Bernoulli beams. ESAIM: Control, Optimisation and Calculus of Variations, Tome 4 (1999), pp. 57-81. http://www.numdam.org/item/COCV_1999__4__57_0/

[1] F. Alimehmeti, A characterisation of generalized C∞ notion on nets. Int. Eq. and Operator Theory 9 ( 1986) 753-766. | MR | Zbl

[2] F. Alimehmeti, Regular solutions of transmission and interaction problems for wave equations. Math. Meth. Appl. Sci. 11 ( 1989) 665-685. | MR | Zbl

[3] J.M. Ball and M. Slemrod, Nonharmonic Fourier series and the stabilization of distributed semi-linear control systems. Comm. Pure Appl. Math. 32 ( 1979) 555-587. | MR | Zbl

[4] J. Von Below, A characteristic equation associated to an eigenvalue problem on c2-networks. Linear Alg. Appl. 71 ( 1985) 309-325. | MR | Zbl

[5] J. Von Below, Classical solvability of linear parabolic equations on networks. J. Diff. Eq. 72 ( 1988) 316-337. | MR | Zbl

[6] J. Von Below, Sturm-Liouville eigenvalue problems on networks. Math. Meth. Appl. Sci. 10 ( 1988) 383-395. | MR | Zbl

[7] J. Von Below, Parabolic Network Equations. Habilitation Thesis, Eberhard-Karls-Universität Tübingen ( 1993).

[8] J. Von Below and S. Nicaise, Dynamical interface transition with diffusion in ramified media. Comm. Partial Diff. Eq. 21 ( 1996) 255-279. | MR | Zbl

[9] A. Borovskikh, R. Mustafokulov, K. Lazarev and Yu. Pokornyi, A class of fourth-order differential equations on a spatial net. Doklady Math. 52 ( 1995) 433-435. | Zbl

[10] G. Chen, M. Delfour, A. Krall and G. Payre, Modelling, stabilization and control of serially connected beams. SIAM J. Control and Opt. 25 ( 1987) 526-546. | MR | Zbl

[11] G. Chen, S. Krantz, D. Russell, C. Wayne, H. West and M. Coleman, Analysis, design, and behavior of dissipative joints for coupled beams. SIAM J. Appl. Math. 49 ( 1989) 1665-1693. | MR | Zbl

[12] G. Chen and J. Zhou, The wave propagation method for the analysis of boudary stabilization in vibrating structures, SIAM J. Appl. Math. 50 ( 1990) 1254-1283. | MR | Zbl

[13] P.G. Ciarlet, H. Le Dret and R. Nzengwa, Junctions between three-dimension and two-dimensional linearly elastic structures. J. Math. Pures Appl. 68 ( 1989) 261-295. | MR | Zbl

[14] F. Conrad, Stabilization of vibrating beams by a specific feedback, A.V. Balakrishnan and J.P. Zolésio Eds., Stabilization of flexible structures, Opt. Software Inc. ( 1988) 36-51. | Zbl

[15] B. Dekoninck and S. Nicaise, The eigenvalue problem for networks of beams. Preprint LIMAV 96-9, University of Valenciennes, Linear Alg. Appl. (submitted). | MR | Zbl

[16] P. Grisvard, Elliptic problems in nonsmooth domains. Monographs and Studies in Mathematics 21 (Pitman, Boston, 1985). | MR | Zbl

[17] P. Grisvard, Contrôlabilité exacte des solutions de l'équation des ondes en présence de singularités. J. Math. Pures Appl. 68 ( 1989) 215-259. | MR | Zbl

[18] A.E. Ingham, Some trigonometrical inequalities with applications in the theory of series. Math. Z. 41 ( 1936) 367-369. | MR | Zbl

[19] V. Komornik, Exact controllability and stabilization. The multiplier method. RM A 36 Masson, Paris ( 1994). | MR | Zbl

[20] J.E. Lagnese, Modeling and controllability of plate-beam systems. J. Math. Systems, Estimation and Control. 5 ( 1995) 141-187. | MR | Zbl

[21] J.E. Lagnese, G. Leugering and E.J.P.G. Schmidt, Modeling of dynamic networks of thin thermoelastic beams. Math. Meth. Appl. Sci. 16 ( 1993) 327-358. | MR | Zbl

[22] J.E. Lagnese, G. Leugering and E.J.P.G. Schmidt, Control of planar networks of Timoshenko beams. SIAM J. Cont. Opt. 31 ( 1993) 780-811. | MR | Zbl

[23] J.E. Lagnese, G. Leugering and E.J.P.G. Schmidt, Modeling, analysis and control of dynamic elastic multi-link structures, Birkhäuser, Boston ( 1994). | MR | Zbl

[24] H. Le Dret, Problèmes variationnels dans les multi-domaines. Modélisation des jonctions et applications. RMA 19, Masson, Paris ( 1991). | MR | Zbl

[25] G. Leugering and E.J.P.G. Schmidt, On the control of networks of vibrating strings and beams, in Proc. of the 28th IEEE Conference on Decision and Control, Vol. 3, IEEE ( 1989) 2287-2290.

[26] J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, RMA 8, Masson, Paris ( 1988). | MR | Zbl

[27] S. Nicaise, Exact controllability of a pluridimensional coupled problem. Rev. Math. Univ. Complutense Madrid 5 ( 1992) 91-135. | MR | Zbl

[28] S. Nicaise, About the Lamé system in a polygonal or a polyhedral domain and a coupled problem between the Lamé system and the plate equation II: Exact controllability. Ann. Scuola Normale Sup. Pisa, Series IV 20 ( 1993) 163-191. | Numdam | MR | Zbl

[29] S. Nicaise, Boundary exact controllability of interface problems with singularities I: Addition of the coefficients of singularities. SIAM J. Contr. Opt. 34 ( 1996) 1512-1533. | MR | Zbl

[30] S. Nicaise, Boundary exact controllability of interface problems with singularities II: Addition of internal controls. SIAM J. Contr. Opt. 35 ( 1997) 585-603. | MR | Zbl

[31] J.P. Puel and E. Zuazua, Exact controllability for a model of multidimensional flexible structure. Proc. Royal Soc. Edinburgh 123 A ( 1993) 323-344. | MR | Zbl

[32] E.J.P.G. Schmidt, On the modelling and exact controllability of networks of vibrating strings. SIAM J. Contr. Opt.30 ( 1992) 229-245. | MR | Zbl