@article{COCV_1999__4__497_0, author = {Osses, Axel and Puel, Jean-Pierre}, title = {Approximate controllability for a linear model of fluid structure interaction}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {497--513}, publisher = {EDP-Sciences}, volume = {4}, year = {1999}, mrnumber = {1713527}, zbl = {0931.35014}, language = {en}, url = {http://www.numdam.org/item/COCV_1999__4__497_0/} }
TY - JOUR AU - Osses, Axel AU - Puel, Jean-Pierre TI - Approximate controllability for a linear model of fluid structure interaction JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 1999 SP - 497 EP - 513 VL - 4 PB - EDP-Sciences UR - http://www.numdam.org/item/COCV_1999__4__497_0/ LA - en ID - COCV_1999__4__497_0 ER -
%0 Journal Article %A Osses, Axel %A Puel, Jean-Pierre %T Approximate controllability for a linear model of fluid structure interaction %J ESAIM: Control, Optimisation and Calculus of Variations %D 1999 %P 497-513 %V 4 %I EDP-Sciences %U http://www.numdam.org/item/COCV_1999__4__497_0/ %G en %F COCV_1999__4__497_0
Osses, Axel; Puel, Jean-Pierre. Approximate controllability for a linear model of fluid structure interaction. ESAIM: Control, Optimisation and Calculus of Variations, Tome 4 (1999), pp. 497-513. http://www.numdam.org/item/COCV_1999__4__497_0/
[1] An inverse spectral theorem and its relation to the Pompeiu problem. J. Anal. Math. 37 ( 1980) 128-144. | MR | Zbl
,[2] The Pompeiu problem, what's new?, Deville R. et al. (Ed.), Complex analysis, harmonic analysis and applications. Proceedings of a conference in honour of the retirement of Roger Gay, June 7-9, 1995, Bordeaux, France. Harlow: Longman. Pitman Res. Notes Math. Ser. 347 ( 1996) 1-11. | MR | Zbl
,[3] An inverse problem originating from magnetohydrodynamics. III: Domains with corners of arbitrary angles. Asymptotic Anal. 11 ( 1995) 289-315. | MR | Zbl
and ,[4] Analyse Fonctionnelle, Théorie et Applications, Collection Math. Appl. Pour la Maîtrise, Masson, Paris ( 1983). | MR | Zbl
,[5] Spectral synthesis and the Pompeiu problem. Ann. Inst. Fourier 23 ( 1973) 125-154. | Numdam | MR | Zbl
, and ,[6] Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, 24. Pitman, Boston-London-Melbourne ( 1985). | MR | Zbl
,[7] Remarques sur la contrôlabilité approchée, Control of distributed Systems, Span.-Fr. Days, Malaga/Spain 1990, Grupo Anal. Mat. Apl. Univ. Malaga 3 ( 1990) 77-87. | MR | Zbl
,[8] Problèmes Aux Limites Non Homogènes et Applications, Vols. I, II, III, Dunod, Paris ( 1968). | Zbl
and ,[9] Approximate controllability of a hydro-elastic coupled system. ESAIM: Contr. Optim. Calc. Var. 1( 1995) 1-15. | Numdam | MR | Zbl
and ,[10] A rotated direction multiplier technique. Applications to the controllability of waves, elasticity and tangential Stokes control, SIAM J. Cont. Optim., to appear.
,[11] Approximate controllability of a linear model in solid-nuid interaction in a rectangle. to appear.
and ,[12] Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York. Appl. Math. Sci. 44 ( 1983). | MR | Zbl
,[13] A symmetry problem in potential theory. Arch. Rational. Mech. Anal. 43 ( 1971) 304-318. | MR | Zbl
,[14] Navier-Stokes Equations, North-Holland, Amsterdam ( 1977). | Zbl
,[15] An inverse problem for the equation ∆u = - cu - d. Ann. Inst. Fourier, 44 ( 1994) 1181-1209 | Numdam | MR | Zbl
,[16] Analyticity of the boundary for Lipschitz domains without the Pompeiu property. Indiana Univ. Math. J. 30 ( 1981) 357-369. | MR | Zbl
,