@article{COCV_1999__4__1_0, author = {Morin, Pascal and Samson, Claude}, title = {Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1--35}, publisher = {EDP-Sciences}, volume = {4}, year = {1999}, mrnumber = {1680693}, zbl = {0919.93059}, language = {en}, url = {http://www.numdam.org/item/COCV_1999__4__1_0/} }
TY - JOUR AU - Morin, Pascal AU - Samson, Claude TI - Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 1999 SP - 1 EP - 35 VL - 4 PB - EDP-Sciences UR - http://www.numdam.org/item/COCV_1999__4__1_0/ LA - en ID - COCV_1999__4__1_0 ER -
%0 Journal Article %A Morin, Pascal %A Samson, Claude %T Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics %J ESAIM: Control, Optimisation and Calculus of Variations %D 1999 %P 1-35 %V 4 %I EDP-Sciences %U http://www.numdam.org/item/COCV_1999__4__1_0/ %G en %F COCV_1999__4__1_0
Morin, Pascal; Samson, Claude. Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics. ESAIM: Control, Optimisation and Calculus of Variations, Tome 4 (1999), pp. 1-35. http://www.numdam.org/item/COCV_1999__4__1_0/
[1] Robust stabilization of flat and chained systems, in European Control Conference (ECC) ( 1995) 2642-2646.
and ,[2] Asymptotic stability and feedback stabilization, Differential Geometric Control Theory, R.S. Millman R.W. Brockett and H.H. Sussmann Eds., Birkauser ( 1983). | MR | Zbl
,[3] Exponential stabilization of mobile robots with nonholonomic constraints. IEEE Trans. Automat. Control 37 ( 1992) 1791-1797. | MR | Zbl
and ,[4] Flatness and defect of non-linear systems: introductory theory and examples. Internat. J. Control 61 ( 1995) 1327-1361. | MR | Zbl
, , and ,[5] Nilpotent and high-order approximations of vector field systems. SIAM Rev. 33 ( 1991) 238-264. | MR | Zbl
,[6] Nonlinear control systems. Springer Verlag, third edition ( 1995). | MR | Zbl
,[7] Geometric homogeneity and stabilization, in IFAC Nonlinear Control Systems Design Symp. (NOLCOS) ( 1995) 164-169.
,[8] Developments in nonholonomic control problems. IEEE Control Systems ( 1995) 20-36.
and ,[9] Iterated lie brackets in limit processes in ordinary differential equations. Results in Mathematics 14 ( 1988) 125-137. | MR | Zbl
and ,[10] Nonholonomic motion planning. Kluwer Academic Press ( 1993). | Zbl
and ,[11] An approximation algorithm for nonholonomic systems. SIAM J. Contr. Opt. 35 ( 19971328-1365. | MR | Zbl
,[12] Non-robustness of continuous homogeneous stabilizers for affine systems. Technical Report 3508, INRIA ( 1998) Available at http://www.inria.fr/RRRT/RR-3508.html
, and ,[13] Exponential stabilization of driftless nonlinear control systems using homogeneous feedback. IEEE Trans. Automat. Contr. 42 ( 1997) 614-628. | MR | Zbl
and ,[14] An introduction to motion planning using multirate digital control, in IEEE Conf. on Decision and Control (CDC) ( 1991) 1780-1785.
and ,[15] Design of homogeneous time-varying stabilizing control laws for driftless controllable systems via oscillatory approximation of lie brackets in closed-loop. SIAM J. Contr. Opt. (to appear). | MR | Zbl
, and ,[16] Developments in time-varying feedback stabilization of nonlinear systems, in IFAC Nonlinear Control Systems Design Symp. (NOLCOS) ( 1998) 587-594.
, and ,[17] Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics. Technical Report 3477, INRIA ( 1998).
and ,[18] Nonholonomic motion planning: Steering using sinusoids. EEE Trans. Automat. Contr. 38 ( 1993) 700-716. | MR | Zbl
and ,[19] Étude de quelques problèmes de stabilisation. PhD thesis, École Normale de Cachan ( 1993).
,[20] Velocity and torque feedback control of a nonholonomic cart, in Int. Workshop in Adaptative and Nonlinear Control: Issues in Robotics. LNCIS, Vol. 162, Springer Verlag, 1991 ( 1990). | MR | Zbl
,[21] Exponential stabilization of nonholonomic chained systems. IEEE Trans. Automat. Contr. 40 ( 1995) 35-49. | MR | Zbl
and ,[22] Polynomial approximations to control systems and local controllability, in IEEE Conf. on Decision and Control (CDC) ( 1985) 33-38.
,[23] On the local controllability of scalar-input control systems, in Theory and Applications of Nonlinear Control Systems, Proc. of MTNS'84, C.I. Byrnes and A. Linsquist Eds., North-Holland ( 1986) 167-179. | MR | Zbl
,[24] Limits of highly oscillatory controls ans approximation of general paths by admissible trajectories, in IEEE Conf. on Decision and Control (CDC) ( 1991) 437-442.
and ,[25] Lie brackets and local controllability: a sufficient condition for scalar-input systems, SIAM J. Contr. Opt. 21 ( 1983) 686-713. | MR | Zbl
,[26] A general theorem on local controllability. SIAM J. Contr. Opt. 25 ( 1987) 158-194. | MR | Zbl
,