@article{COCV_1999__4__159_0, author = {Camilli, Fabio and Falcone, Maurizio}, title = {Approximation of control problems involving ordinary and impulsive controls}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {159--176}, publisher = {EDP-Sciences}, volume = {4}, year = {1999}, mrnumber = {1816510}, zbl = {0929.49018}, language = {en}, url = {http://www.numdam.org/item/COCV_1999__4__159_0/} }
TY - JOUR AU - Camilli, Fabio AU - Falcone, Maurizio TI - Approximation of control problems involving ordinary and impulsive controls JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 1999 SP - 159 EP - 176 VL - 4 PB - EDP-Sciences UR - http://www.numdam.org/item/COCV_1999__4__159_0/ LA - en ID - COCV_1999__4__159_0 ER -
%0 Journal Article %A Camilli, Fabio %A Falcone, Maurizio %T Approximation of control problems involving ordinary and impulsive controls %J ESAIM: Control, Optimisation and Calculus of Variations %D 1999 %P 159-176 %V 4 %I EDP-Sciences %U http://www.numdam.org/item/COCV_1999__4__159_0/ %G en %F COCV_1999__4__159_0
Camilli, Fabio; Falcone, Maurizio. Approximation of control problems involving ordinary and impulsive controls. ESAIM: Control, Optimisation and Calculus of Variations, Tome 4 (1999), pp. 159-176. http://www.numdam.org/item/COCV_1999__4__159_0/
[1] Viscosity solutions of Bellman equation and optimal deterministic control theory. Birkhäuser, Boston ( 1997). | MR | Zbl
and ,[2] An approximation scheme for the minimum time function. SIAM J. Control Optim. 28 ( 1990) 950-965. | MR | Zbl
and ,[3] Deterministic Impulse control problems. SIAM J. Control Optim. 23 ( 1985) 419-432. | MR | Zbl
,[4] Convergence of approximation scheme for fully nonlinear second order equations. Asymptotic Anal. 4 ( 1991) 271-283. | MR | Zbl
and ,[5] Optimal control and differential games with measures. Nonlinear Anal. TMA 21 ( 1993) 241-268. | MR | Zbl
, and ,[6] Impulse control and quasi-variational inequalities. Gauthier-Villars, Paris ( 1984). | MR
and ,[7] Hyperimpulsive motions and controllizable coordinates for Lagrangean systems. Atti Accad. Naz. Lincei, Mem Cl. Sc. Fis. Mat. Natur. 19 ( 1991). | MR
,[8] Impulsive control systems with commutative vector fields. J. Optim. Th. et Appl. 71 ( 1991) 67-83. | MR | Zbl
and ,[9] Approximation of optimal control problems with state constraints: estimates and applications, in Nonsmooth analysis and geometric methods in deterministic optimal control (Minneapolis, MN, 1993) Springer, New York ( 1996) 23-57. | MR | Zbl
and ,[10] Discrete dynamic programming and viscosity solutions of the Bellman equation. Ann. Inst. H.Poincaré Anal. Nonlin. 6 ( 1989) 161-184. | Numdam | MR | Zbl
and ,[11] Approximate solutions of Bellman equation of deterministic control theory. Appl. Math. Optim. 11 ( 1984) 161-181. | MR | Zbl
and ,[12] Some properties of viscosity solutions of Hamilton-Jacobi equation. Trans. Amer. Math. Soc. 282 ( 1984) 487-502. | MR | Zbl
, and ,[13] The optimal exploitation of renewable resource stocks. Econometrica 48 ( 1979) 25-47. | Zbl
, and ,[14] Optimal advertising in exponentially decaying markets. J. Optim. Th. et Appl. 79 ( 1993) 219-236. | MR | Zbl
and ,[15]A multistate multicontrol problem with unbounded controls. SIAM J. Control Optim. 32 ( 1994) 1322-1331. | MR | Zbl
and ,[16] A numerical approach to the infinite horizon problem. Appl. Math. et Optim. 15 ( 1987) 1-13 and 23 ( 1991) 213-214. | MR | Zbl
,[17] Numerical solution of Dynamic Programming equations, Appendix to M. Bardi and I. Capuzzo Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser, Boston ( 1997).
,[18] Controlled Markov processes and viscosity solutions. Springer-Verlag ( 1992). | MR | Zbl
and ,[19] Numerical methods for stochastic control problems in continuous time. Springer-Verlag ( 1992). | MR | Zbl
and ,[20] Optimal space trajectories. Elsevier ( 1979). | Zbl
,[21] Generalized solutions of nonlinear optimization problems with impulse control I, II. Automat. Remote Control 55 ( 1995).
,[22] Dynamic programming for nonlinear systems driven by ordinary and impulsive controls. SIAM J. Control Optim. 34 ( 1996) 199-225. | MR | Zbl
,[23] Space-time trajectories of nonlinear system driven by ordinary and impulsive controls. Differential and Integral Equations 8 ( 1995) 269-288. | MR | Zbl
and ,[24] On the Riemannian Structure of a Lagrangian system and the problem of adding time-dependent constraints as controls. Eur. J. Mech. A/Solids 10 ( 1991) 405-431. | MR | Zbl
,[25] Numerical approximation of viscosity solutions of first-order Hamilton-Jacobi equations with Neumann type boundary conditions. Math. Meth. Appl. Sci. 2 ( 1992) 357-374. | MR | Zbl
,[26] Approximation schemes for viscosity solutions of Hamilton-Jacobi equations. J. Diff. Eq. 57 1-43. | MR | Zbl
,