Infinite time regular synthesis
ESAIM: Control, Optimisation and Calculus of Variations, Tome 3 (1998), pp. 381-405.
@article{COCV_1998__3__381_0,
     author = {Piccoli, B.},
     title = {Infinite time regular synthesis},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {381--405},
     publisher = {EDP-Sciences},
     volume = {3},
     year = {1998},
     mrnumber = {1655990},
     zbl = {0921.93016},
     language = {en},
     url = {http://www.numdam.org/item/COCV_1998__3__381_0/}
}
TY  - JOUR
AU  - Piccoli, B.
TI  - Infinite time regular synthesis
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 1998
SP  - 381
EP  - 405
VL  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/COCV_1998__3__381_0/
LA  - en
ID  - COCV_1998__3__381_0
ER  - 
%0 Journal Article
%A Piccoli, B.
%T Infinite time regular synthesis
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 1998
%P 381-405
%V 3
%I EDP-Sciences
%U http://www.numdam.org/item/COCV_1998__3__381_0/
%G en
%F COCV_1998__3__381_0
Piccoli, B. Infinite time regular synthesis. ESAIM: Control, Optimisation and Calculus of Variations, Tome 3 (1998), pp. 381-405. http://www.numdam.org/item/COCV_1998__3__381_0/

[1] M. Bardi, I. Capuzzo Dolcetta: Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equation, Birkäuser, Boston, 1998. | MR | Zbl

[2] V.G. Boltianskii: Sufficient conditions for optimality and the justification of the dynamic programming principle, SIAM J. Contr. and Opt., 4, 1966, 326-361. | MR | Zbl

[3] A. Bressan, B. Piccoli: Structural stability for time-optimal planar syntheses, Dynamics of Continuous, Discrete and Impulsive Systems 3, 1997, 335-371. | MR | Zbl

[4] A. Bressan, B. Piccoli: A generic classification of time optimal planar stabilizing feedbacks', SIAM J. Contr. and Opt. 36, 1998, 12-32. | MR | Zbl

[5] P. Brunovsky: Every normal linear system has a regular time-optimal synthesis, Math. Slovaca 28, 1978, 81-100. | MR | Zbl

[6] P. Brunovsky: Existence of regular syntheses for general problems, J. Diff. Eq., 38, 1980, 317-343. | MR | Zbl

[7] L. Cesari: Optimization - Theory and applications, Springer-Verlag, New York, 1983. | MR | Zbl

[8] W.H. Fleming, R. W. Rishel: Deterministic and stochastic optimal control, Springer-Verlag, New York, 1975. | MR | Zbl

[9] W.H. Fleming, M. Soner: Controlled Markov processes and viscosity solutions, Springer-Verlag, New York, 1993. | MR | Zbl

[10] B. Piccoli: Regular time-optimal syntheses for smooth planar Systems, Rend. Sem. Mat. Univ. Padova 95, 1996, 59-79. | Numdam | MR | Zbl

[11] B. Piccoli: Classification of generic singularities for the planar time optimal syntheses, SIAM J. Contr. Opt. 34, 1996, 1914-1946. | MR | Zbl

[12] B. Piccoli, H.J. Sussmann: Regular synthesis and sufficiency conditions for optimality, to appear in SIAM J. Contr. Opt.. | MR | Zbl

[13] E.P. Ryan: Singular optimal controls for second-order saturating systems, Int. J. Control 30, No. 4 1979, 549-564. | MR | Zbl

[14] H.J. Sussmann: Subanalytic sets and feedback control, J. Diff. Eq. 31, No.l, 1979, 31-52. | MR | Zbl

[15] H.J. Sussmann: Lie brackets, real analyticity and geometric control theory, in Differential Geometric Control Theory, R. W. Brockett, R.S. Millman and H.J. Sussmann Eds., Birkhäuser Boston Inc., 1983, 1-115. | MR | Zbl

[16] H.J. Sussmann: Regular synthesis for time-optimal control of single-input real-analytic systems in the plane, SIAM J. Contr. Opt. 25, No. 5, 1987, 1145-1162. | MR | Zbl

[17] H.J. Sussmann: Recent developments in the regularity theory of optimal trajectories, in Linear and nonlinear mathematical control theory, Rend. Sem. Mat. Univ. e Pol. Torino, Fascicolo speciale, 1987, 149-182. | MR | Zbl

[18] H.J. Sussmann: Synthesis, presynthesis, sufficient conditions for optimality and subanaltic sets, in Nonlinear controllability and optimal control, H.J. Sussmann ed., Marcel Dekker, New York, 1990, 1-19. | MR | Zbl