@article{COCV_1998__3__263_0, author = {Yuxin, Ge}, title = {Estimations of the best constant involving the $L^2$ norm in {Wente{\textquoteright}s} inequality and compact $H$-surfaces in euclidean space}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {263--300}, publisher = {EDP-Sciences}, volume = {3}, year = {1998}, mrnumber = {1634837}, zbl = {0903.53003}, language = {en}, url = {http://www.numdam.org/item/COCV_1998__3__263_0/} }
TY - JOUR AU - Yuxin, Ge TI - Estimations of the best constant involving the $L^2$ norm in Wente’s inequality and compact $H$-surfaces in euclidean space JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 1998 SP - 263 EP - 300 VL - 3 PB - EDP-Sciences UR - http://www.numdam.org/item/COCV_1998__3__263_0/ LA - en ID - COCV_1998__3__263_0 ER -
%0 Journal Article %A Yuxin, Ge %T Estimations of the best constant involving the $L^2$ norm in Wente’s inequality and compact $H$-surfaces in euclidean space %J ESAIM: Control, Optimisation and Calculus of Variations %D 1998 %P 263-300 %V 3 %I EDP-Sciences %U http://www.numdam.org/item/COCV_1998__3__263_0/ %G en %F COCV_1998__3__263_0
Yuxin, Ge. Estimations of the best constant involving the $L^2$ norm in Wente’s inequality and compact $H$-surfaces in euclidean space. ESAIM: Control, Optimisation and Calculus of Variations, Tome 3 (1998), pp. 263-300. http://www.numdam.org/item/COCV_1998__3__263_0/
[1] Complex analysis, Mcgraw-Hill, NewYork, 1966. | MR | Zbl
:[2] Nonlinear analysis on manifolds, Monge-Ampère equations, Grundlehren, Springer, Berlin-Heidelberg-New York-Tokyo, 252, 1982. | MR | Zbl
:[3] Estimations of the best constant involving the L∞ norm in Wente's inequality, Annales de l'Université Paul Satatier, to appear. | Numdam | Zbl
:[4] Méthodes géométriques et topologiques en EDP, Majeure de mathématiques, Ecole polytechnique.
:[5] Improved regularity of elliptic equations involving jacobians and applications, J. Math. Pure. Appl., 72, 1993, 441-475. | MR | Zbl
, :[6] Some applications of the coarea formula to partial differential equations, in Geometry in Partial differential Equation, A. Pratano and T. Rassias Ed., World Scientific Publication. | MR | Zbl
, :[7] Multiple solutions of H-Systems and Rellich's conjecture, Comm. Pure. Appl. Math, 37, 1984, 149-187. | MR | Zbl
, :[8] Topologie et cas limite des injections de Sobolev, C.R. Acad. Sc. Paris, 299, 1984, 209-212. | MR | Zbl
:[9] Compensated compaetness and Hardy spaces, J. Math. Pure, Appl, 72, 1993, 247-286. | MR | Zbl
, , , :[10] Restrictions on harmonic maps of surfaces, Topology, 299, 1975, 263-266. | MR | Zbl
, :[11] Weak convergence methods for nonlinear partial differential equations, Regional conference series in mathematics, 74, 1990. | MR | Zbl
:[12] Geometric measure theory, Springer, Berlin and New York, 1969. | MR | Zbl
:[13] Elliptic partial differential equations of second order, Grundlehren, Springer, Berlin-Heidelberg-New York-Tokyo, 224, 1983. | MR | Zbl
, :[14] On the local behavior of solutions of nonparabolic partial differential equations, Amer. J. Math., 75, 1953, 449-476. | MR | Zbl
, :[15] Applications harmoniques, lois de conservation et repère mobile, Diderot éditeur, Paris-New York-Amsterdam, 1996, or Harmonic maps, conservation laws and moving frames, Diderot éditeur, Paris-New York-Amsterdam, 1997.
:[16] Two-dimensional geometric variational problems, Wiley, 1991. | MR | Zbl
:[17] Variational problems for surfaces with volume constraint, PhD Thesis, University of Southern California, 1992.
:[18] The concentration-compactness principle in the calculus of variations: The limit case. Part I and Part II, Rev. Mat. Ibero., 1(1), 1985, 145-201 and 1(2), 1985, 45-121. | MR | Zbl
:[19] A global compactness resuit for elliptic boundary value problem involving limiting nonlinearities, Math. Z., 26, 1984, 511-517. | MR | Zbl
:[20] Variational Methods, Springer, Berlin-Heidelberg-New York-Tokyo, 1990. | MR | Zbl
:[21] The Optimal Constant in Wente's L∞ Estimate, Comment. Math. Helv., 72, 1997, 316-328. | MR | Zbl
:[22] An existence Theorem for surfaces of constant mean curvature, J. Math. Anal. Appl, 26, 1969, 318-344. | MR | Zbl
:[23] The different ial équations ∆x = 2Hxu ʌxv with vanishing boundary values, Proc. AMS, 50, 1975, 131-135. | Zbl
: