@article{COCV_1998__3__235_0, author = {Bergounioux, M. and Tr\"oltzsch, F.}, title = {Optimal control of linear bottleneck problems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {235--250}, publisher = {EDP-Sciences}, volume = {3}, year = {1998}, mrnumber = {1632175}, zbl = {0904.49020}, language = {en}, url = {http://www.numdam.org/item/COCV_1998__3__235_0/} }
TY - JOUR AU - Bergounioux, M. AU - Tröltzsch, F. TI - Optimal control of linear bottleneck problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 1998 SP - 235 EP - 250 VL - 3 PB - EDP-Sciences UR - http://www.numdam.org/item/COCV_1998__3__235_0/ LA - en ID - COCV_1998__3__235_0 ER -
Bergounioux, M.; Tröltzsch, F. Optimal control of linear bottleneck problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 3 (1998), pp. 235-250. http://www.numdam.org/item/COCV_1998__3__235_0/
[1] A review of duality theory for linear programming over topological vector spaces, J. Math. Anal. Appl., 97, 1983, 380-392. | MR | Zbl
:[2] Linear programming in infinite-dimensional spaces, J. Wiley & sons, Chichester, 1987. | MR | Zbl
, :[3] Extreme points for linear optimal control problems with diagonal structure, SIAM J. Control Optim., 30 (6), 1992, 1385-1394. | MR | Zbl
, :[4] General optimality conditions for constrained convex control problems, SIAM J. Control Optim., 34 (2), 1996, 698-711. | MR | Zbl
, :[5] Optimality conditions and generalized Bang-Bang principle for a state constrained semilinear parabolic problem, Numerical Functional Analysis and Optimization, 15, 1996, 517-537. | MR | Zbl
, :[6] Analyse convexe et problèmes variationnels, Dunod Gauthier-Villars, Paris, 1974. | MR | Zbl
, :[7] Continuous programming I, J. Math. Anal. Appl., 28, 1969, 39-51. | MR | Zbl
:[8] Symmetrie duality for continuous linear programs, SIAM J. Appl. Math., 18, 1970, 84-97. | MR | Zbl
:[9] Theory of extremal problems, North-Holland, Amsterdam, 1979(translation from the Russian). | MR | Zbl
, :[10] A class of continuous linear programming problems, J. Math. Anal. Appl., 16, 1966, 73-83. | MR | Zbl
:[11] Optimality conditions for parabolic control problems and applications, Teubner Texte zur Mathematik, Leipzig, 1984. | MR | Zbl
:[12] A modification of the Zowe and Kurcyusz regularity condition with application to the optimal control of Noether operator equations with constraints on the control and the state, Math. Operationforsch, Statist., Serie Optimization, 14 (2), 1983, 245-253. | MR | Zbl
:[13] Existenz- und Dualitätsaussagen für lineare Optimierungsaufgaben in reflexiven Banachräumen, Math. Operationsforsch. u. Statist., 6, 1975, 901-912. | MR | Zbl
:[14] A duality theorem for a class of continuous linear programming problems, Journal of SIAM, 13, 1965, 644-666. | MR | Zbl
:[15] Regularity and stability for the mathematical programming problem in Banach spaces, Applied Mathematics and Optimization, 5, 1979, 49-62. | MR | Zbl
, :