An extension of the auxiliary problem principle to nonsymmetric auxiliary operators
ESAIM: Control, Optimisation and Calculus of Variations, Tome 2 (1997), pp. 281-306.
@article{COCV_1997__2__281_0,
     author = {Renaud, A. and Cohen, G.},
     title = {An extension of the auxiliary problem principle to nonsymmetric auxiliary operators},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {281--306},
     publisher = {EDP-Sciences},
     volume = {2},
     year = {1997},
     mrnumber = {1467139},
     zbl = {0918.47044},
     language = {en},
     url = {http://www.numdam.org/item/COCV_1997__2__281_0/}
}
TY  - JOUR
AU  - Renaud, A.
AU  - Cohen, G.
TI  - An extension of the auxiliary problem principle to nonsymmetric auxiliary operators
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 1997
SP  - 281
EP  - 306
VL  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/COCV_1997__2__281_0/
LA  - en
ID  - COCV_1997__2__281_0
ER  - 
%0 Journal Article
%A Renaud, A.
%A Cohen, G.
%T An extension of the auxiliary problem principle to nonsymmetric auxiliary operators
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 1997
%P 281-306
%V 2
%I EDP-Sciences
%U http://www.numdam.org/item/COCV_1997__2__281_0/
%G en
%F COCV_1997__2__281_0
Renaud, A.; Cohen, G. An extension of the auxiliary problem principle to nonsymmetric auxiliary operators. ESAIM: Control, Optimisation and Calculus of Variations, Tome 2 (1997), pp. 281-306. http://www.numdam.org/item/COCV_1997__2__281_0/

[1] B. Baillon, G. Haddad: Quelques Propriétés des Opérateurs Angles-Bornés et n-cycliquement Monotones, Israel Journal of Mathematics, 26, 1977, 137-150. | MR | Zbl

[2] V. Barbu, T. Precupanu: Convexity and Optimization in Banach Spaces, Mathematics and its applications, East European Series, D. Reidel Publishing Company, 1986. | MR | Zbl

[3] L. Bregman: The Relaxation Method of Finding the Common Point of Convex Sets and its Application to the Solution of Problems in Convex Programming, U.S.S.R. Comput. Math. and Math. Phys., 7, 1967, 200-217. | MR | Zbl

[4] H. Brezis: Opérateurs Maximaux Monotones, Lectures Notes 5, North-Holland, 1973.

[5] Y. Censor, S.A. Zenios: Proximal Minimization Algorithm with D-Functions, Journal of Optimization Theory and Application, 73, 1992, 451-464. | MR | Zbl

[6] G. Chen, M. Teboulle: Convergence Analysis of a Proximal-like Minimization Algorithm using Bregman Functions, SIAM Journal of Optimization, 3, 1993, 538-543. | MR | Zbl

[7] G. Cohen: Optimization by Decomposition and Coordination: a Unified Approach, IEEE Transactions on Automatic Control, 23, 1978, 222-232. | MR | Zbl

[8] G. Cohen: Auxiliary Problem Principle and Decomposition of Optimization Problems, Journal of Optimization Theory and Applications, 32, 1980, 277-305. | MR | Zbl

[9] G. Cohen: Auxiliary Problem Principle Extended to Variational Inequalities, Journal of Optimization Theory and Applications, 59, 1988, 369-390. | MR | Zbl

[10] G. Cohen: Décomposition et Coordination en Optimisation Déterministe Différentiable et Non Différentiable, Thesis Dissertation, University of Paris Dauphine, 1984.

[11] J.C. Dunn: Convexity, Monotonicity and Gradient Process in Hilbert Spaces, Journal of Mathematical Analysis and Applications, 53, 1976, 145-158. | MR | Zbl

[12] J. Eckstein: Nonlinear Proximal Point Algorithms using Bregman Functions, Math. Oper. Research, 18, 1993, 202-226. | MR | Zbl

[13] J. Eckstein, D.P. Bertsekas: On the Douglas-Rachford Splitting Method and the Proximal Point Algorithm for Maximal Monotone Operators, Mathematical Programming, 55, 1992, 293-318. | MR | Zbl

[14] D. Gabay: Applications of the Method of Multipliers to Variational Inequalities, in Augmented Lagrangian Methods: Applications to the Solution of Boundary-Valued Problems, M. Fortin and R. Glowinski, eds., North-Holland, Amsterdam, 1983, 299-331.

[15] J.-B. Hiriart-Urruty, C. Lemaréchal: Convex Analysis and Minimization Algorithms, Springer-Verlag, Berlin, Germany, 1993. | Zbl

[16] B. Lemaire: The Proximal Algorithm, in International Series of Numerical Mathematics, J.-P. Penot ed., Birkhäuser-Verlag, Basel, 87, 1989, 73-87. | Zbl

[17] P.-L. Lions, B. Mercier: Splitting Algorithm for the Sum of Two Nonlinear Operators, SIAM J. Numer. Anal., 16, 1979, 964-979. | MR | Zbl

[18] F.J.R. Luque: Asymptotic Convergence Analysis of the Proximal Point Algorithm, SIAM Journal of Control and Optimization, 22, 1984, 277-293. | MR | Zbl

[19] B. Martinet: Régularisation d'Inéquations Variationnelles par Approximations Successives, Revue d'Automatique, d'Informatique et de Recherche Opérationnelle, Série Rouge, 3, 1970, 154-159. | Numdam | MR | Zbl

[20] M.A. Mataoui: Contributions à la Décomposition et à l'Agrégation des Problèmes Variationnels, Thesis Dissertation, École des Mines de Paris, Paris, France, 1990.

[21] J.-J. Moreau: Proximité et Dualité dans un Espace Hilbertien, Bull. Soc. Math. France, 93, 1965, 273-299. | Numdam | MR | Zbl

[22] M. Patriksson: A Unified Framework of Descent Algorithm for Nonlinear Programs and Variational Inequalities, Thesis Dissertation, Linköping University, 1993.

[23] R.T. Rockafellar: Local Boundedness of Nonlinear Monotone Operators, Michigan Mathematics Journal, 16, 1969, 397-407. | MR | Zbl

[24] R.T. Rockafellar: On the Maximality of Sums of Nonlinear Monotone Operators, Transactions of the American Mathematical Society, 149, 1970, 75-88. | MR | Zbl

[25] R.T. Rockafellar: Monotone Operators and the Proximal Point Algorithm, SIAM Journal of Control and Optimization, 14, 1976, 877-898. | MR | Zbl

[26] P. Tseng: Applications of a Splitting Algorithm to Decomposition in Convex Programming and Variational Inequalities, SIAM Journal of Control and Optimization, 29, 1991, 119-138. | MR | Zbl

[27] K. Yosida: Functional Analysis, Springer-Verlag, 1964.

[28] D. Zhu, P. Marcotte: New Classes of Generalized Monotonicity, Journal of Optimization Theory and Applications, 87, 1995, 457-471. | MR | Zbl