A level-set approach for inverse problems involving obstacles
ESAIM: Control, Optimisation and Calculus of Variations, Tome 1 (1996), pp. 17-33.
@article{COCV_1996__1__17_0,
     author = {Santosa, Fadil},
     title = {A level-set approach for inverse problems involving obstacles},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {17--33},
     publisher = {SMAI (Soci\'et\'e de math\'ematiques appliqu\'ees et industrielles)},
     address = {Paris},
     volume = {1},
     year = {1996},
     mrnumber = {1382514},
     zbl = {0870.49016},
     language = {en},
     url = {http://www.numdam.org/item/COCV_1996__1__17_0/}
}
TY  - JOUR
AU  - Santosa, Fadil
TI  - A level-set approach for inverse problems involving obstacles
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 1996
SP  - 17
EP  - 33
VL  - 1
PB  - SMAI (Société de mathématiques appliquées et industrielles)
PP  - Paris
UR  - http://www.numdam.org/item/COCV_1996__1__17_0/
LA  - en
ID  - COCV_1996__1__17_0
ER  - 
%0 Journal Article
%A Santosa, Fadil
%T A level-set approach for inverse problems involving obstacles
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 1996
%P 17-33
%V 1
%I SMAI (Société de mathématiques appliquées et industrielles)
%C Paris
%U http://www.numdam.org/item/COCV_1996__1__17_0/
%G en
%F COCV_1996__1__17_0
Santosa, Fadil. A level-set approach for inverse problems involving obstacles. ESAIM: Control, Optimisation and Calculus of Variations, Tome 1 (1996), pp. 17-33. http://www.numdam.org/item/COCV_1996__1__17_0/

[1] MATLAB: High-performance numeric computation and visualization software - Refrence guide, MathWorks, Natick, MA, 1992.

[2] V. Casselles, F. Catté, T. Coll, and F. Dibos: A geometric model for active contours in image processing, Numerische Mathematik, 66, 1993, 1-31. | MR | Zbl

[3] D. Colton and R. Kress: Inverse acoustic and electromagnetic scattering theory, Springer-Verlag, Berlin, 1992. | MR | Zbl

[4] J. Dennis and R. Schnabel: Numerical methods for unconstrained optimization and nonlinear equations, Prentice-Hall, Englewood Cliffs, 1983. | MR | Zbl

[5] A. Friedman: Detection of mines by electric measurements, SIAM J. Appl Math., 47, 1987, 201-212. | MR | Zbl

[6] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum and A. Yezzi: Gradient flows and geometric active contour models, Proc. ICCV, Cambridge, 1995.

[7] R. Leveque and Z. Li: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM ,L Num, Analysis, 31, 1994, 1019-1044. | MR | Zbl

[8] R. Magnanini and G. Papi: An inverse problem for the helmholtz equation, Inverse Problems, 1, 1985, 357-370. | MR | Zbl

[9] R. Malladi, J. Sethian, and B. Vemuri: Shape modeling with front propagation: a level set approach, IEEE Trans. Pattern Anal. Machine Intell., 17, 1995, 158-175.

[10] S. Osher and J. Sethian: Fronts propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 56, 1988, 12-49. | MR | Zbl

[11] M. Sondhi: Reconstruction of objects from their sound-diffraction patterns, J. Acoust. Soc. Am., 46, 1969, 1158-1164.