A mathematical proof of a formula of Aspinwall and Morrison
Compositio Mathematica, Tome 104 (1996) no. 2, pp. 135-151.
@article{CM_1996__104_2_135_0,
     author = {Voisin, Claire},
     title = {A mathematical proof of a formula of {Aspinwall} and {Morrison}},
     journal = {Compositio Mathematica},
     pages = {135--151},
     publisher = {Kluwer Academic Publishers},
     volume = {104},
     number = {2},
     year = {1996},
     mrnumber = {1421397},
     zbl = {0951.14025},
     language = {en},
     url = {http://www.numdam.org/item/CM_1996__104_2_135_0/}
}
TY  - JOUR
AU  - Voisin, Claire
TI  - A mathematical proof of a formula of Aspinwall and Morrison
JO  - Compositio Mathematica
PY  - 1996
SP  - 135
EP  - 151
VL  - 104
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1996__104_2_135_0/
LA  - en
ID  - CM_1996__104_2_135_0
ER  - 
%0 Journal Article
%A Voisin, Claire
%T A mathematical proof of a formula of Aspinwall and Morrison
%J Compositio Mathematica
%D 1996
%P 135-151
%V 104
%N 2
%I Kluwer Academic Publishers
%U http://www.numdam.org/item/CM_1996__104_2_135_0/
%G en
%F CM_1996__104_2_135_0
Voisin, Claire. A mathematical proof of a formula of Aspinwall and Morrison. Compositio Mathematica, Tome 104 (1996) no. 2, pp. 135-151. http://www.numdam.org/item/CM_1996__104_2_135_0/

1 Aspinwall, P.S. and Morrison, D.R.: Topological field theory and rational curves, Comm. in Math. Phys., vol. 151 (1993), 245-262. | MR | Zbl

2 Audin, M. and Lafontaine, J. (eds): Holomorphic curves in symplectic geometry, Progress in Math. 117, Birkhaüser, 1994. | MR | Zbl

3 Candelas, P., De La Ossa, X.C., Green, P.S. and Parkes, L.: A pair of Calabi-Yau manifolds as an exactly soluble superconformal field theory, Nucl. Phys. B359 (1991), 21-74. | Zbl

4 Gromov, M.: Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347. | MR | Zbl

5 Kontsevich, M.: Enumeration of rational curves via torus action, In: Proceedings of the conference 'The moduli space of curves', Eds Dijgraaf, Faber, Van der Geer, Birkhaüser, 1995. | MR | Zbl

6 Kontsevich, M.: Homological algebra of mirror symmetry, In: Proceedings of the International Congress of Mathematicians, Zurich, 1994, Birkhaüser, 1995. | MR | Zbl

7 Kontsevich, M. and Manin, Yu.: Gromov-Witten classes, quantum cohomology and enumerative geometry, Communications in Math. Physics, vol. 164 (1994), 525-562. | MR | Zbl

8 Laufer, H.B.: On CP1 as an exceptional set, in Recent progress in several complex variables, 261-275, Princeton University Press, 1981. | MR | Zbl

9 Mcduff, D. and Salamon, D.: J-holomorphic curves and quantum cohomology, University Lecture Series, vol. 6, AMS, 1994. | Zbl

10 Manin, Yu.: Generating functions in Algebraic Geometry and Sums over Trees, MPI preprint 94-66, Proceedings of the conference 'The moduli space of curves', Eds Dijgraaf, Faber, Van der Geer, Birkhaüser, 1995. | MR

11 Morrison, D.: Mirror symmetry and rational curves on quintic threefolds, Journal of the AMS, vol. 6 (1), 223-241. | MR | Zbl

12 Ruan, Y. and Tian, G.: A mathematical theory of quantum cohomology, preprint 1994. | MR

13 Vafa, C.: Topological mirrors and quantum rings, in [16]. | MR | Zbl

14 Voisin, C.: Symétrie miroir, Panoramas et Synthèses, n° 2, 1996, Societé Mathematique de France. | MR | Zbl

15 Witten, E.: Mirror manifolds and topological field theory, in [16], 120-158. | MR | Zbl

16 Yau, S. T. (ed.): Essays on mirror manifolds, International Press, Hong Kong, 1992.