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Introduction

Using arithmetic geometric invariant theory developed in [Bu] [Z2] and a result
of Soulé and Philippon ([Sol], [P], [B-G-S]) on Chow variety, in this paper, we
define the heights of semistable varieties in a projective space and study reductions
at Archimedean places of such varieties.

In Section 1, we use the Deligne pairing ([D], [El], [E2], [Frl], [Fr2]) to obtain
local versions of a theorem of Soulé and Philippon ([Sol], [P], [B-G-S]) which
links the Faltings heights of projective varieties and the Philippon heights for
corresponding Chow points. In particular a metric (which 1 called Chow metric)
on the 0(1) bundle of Chow variety is defined which is different from the usual
Fubini-Study metric.

In Section 2, we prove a general stable reduction theorem at Archimedean
places which generalizes a theorem of Kempf-Ness [K-N], they worked on pro-
jective space with Fubini-Study metrics. The stable reduction theorem at non-
Archimedean theorem follows from the work of Seshadri [Se] and Bumol [Bu].

In Section 3, we prove that the Chow metrics defined in Section 1 are positive.
The stable reduction theorem in Section 2 in this case gives special metrics (which
1 called critical metrics) on the 0(1) bundles which characterize the semistabilities
of the varieties. The critical metrics can be described as follows. Let X C IP(V)
be a projective variety which is not contained in any hyperplane. Let £ = 0 (1) lx
and consider V as a linear system of £. For any positive Hermitian metric Il - Il
on £ we define the detorsion function &#x26;!).)! as follows. Let 1 so, sl, ... , 8 N 1 be an
orthonormal basis with respect to the Hermitian structure induced by the metric
and the curvature of (f-, Il - 11). Then

It is easy to see that &#x26;)ut does not depend on the choice of basis. We say Il ’ Il is
critical with respect to V if bl 1. 11 is a constant function. We show that the existence of
a critical metric implies the semistability, and stability implies the existence and the
uniqueness of critical metrics. The limits of these critical metrics are conjectured
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to be Kahler-Einstein metrics when £ is the canonical bundle. The idea to obtain
Kahler-Einstein metrics on a projective complex variety as a limit of Fubini-Study
metrics is due to Yau and Tian ([Y2] p. 35, [T], [D-T]).

In Section 4, we define the height h(X) of a semistable variety X E R»N to
be the height of the corresponding point on the quotient variety of Chow variety.
This height can also be defined by the following more direct way (inspired by a
question of B. Mazur). For any Hermitian vector bundle E over Spec(OK) which
extends the trivial bundle K N let ,CE be the restriction of 0 (1) bundle of JP&#x3E; (£) on
the Zariski closure of X in IP(S), then we define the height hE (X ) with respect to
E by the formula

Then we show that hE (X) is bounded below as a function of E if and only if X is
semistable (so this gives converses of results of Comalba-Harris [C-H] and Bost
[Bo],) and if X is semistable then the minimal value of h£(X) is h(X). The stable
reduction theorem can even tell us such minimal value can be obtained by some E
(which is unique in some sense) such that X has stable reduction in P(£) and the
Hermitian metric on E induces a critical metric on G£.

The height h(X) should be positive as it is true in function field case [C-H]. In
this paper we can only prove that

where 1 and

is the Faltings height of the projective space [Fa]. This improves a result of Bost
[Bo] where bounds are not explicitly given and a result of Soulé [So2] where
bounds are given for h,, (X) in terms of the definition field of E and X. Our proof
is based on Soulé’s arguments with some improvements.

In 1991, B. Mazur asked me a question about the minimized Faltings heights
h(X) in a projective space ]pN under the action of SL(N + 1, Q). Our height here
is its adelic version: h(X) is the minimized height under the action of SL(N +
1, A (8) Q) where A is the ring of adeles of Q.

The importance of the quantity h,, (X) already appears in [C-H] and [Bo].
Moreover the importance of some combination of geometric invariant theory and
Arakelov geometry to define heights on moduli spaces has been first advocated by
Bumol [Bu].
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1. Deligne pairings and Chow sections

1.1. DELIGNE’S PAIRINGS

LetTT: X ---&#x3E; S be a flat and projective morphism of integral schemes of pure relative
dimension n. Let f-0, ... , Ln be line bundles on X and let (f-0, - - - , Ln) (XI S)
be the Deligne pairing ([D Sect. 8.1], [El], [E2], [Frl], [Fr2]). More precisely,
(f-0, - - - , f-n) is locally in Zariski topology generated by symbols (l o, ... , In) with
a relation, where li’s are sections of Li’ s such that their divisors have no intersection.
The relation is as follows. For some i between 0 and n and a function f on X, if
the intersection nz div (1j) = EiniYi is finite over S and has empty intersection
with div(/), then

From definition, it is easy to see that the functor (... ) (XIS) is multilinear and
symmetric from no Pic (X) to Pic(S), and commutes with base change of S. For
our purpose we list two properties here.

The first one is the projection formula. Let 0: X ---&#x3E; Y be a morphism of
projective and flat integral schemes over S, m = dim(Y/S), n = dim(X/Y). Let
lCo, ... , /Cm be line bundles on X, and LI, ... , Ln be line bundles on Y. Then
there is a canonical isomorphism

The isomorphism locally on S sends (ko, ..., km, cjJ* ll, ... , cjJ* ln) to ((ko, ..., km),
l1, ... , ln), where ki’s and lj’s are sections of Ki’s and £j ’s respectively, such that
(i) divisors of ki’s have no intersection in the generic fiber of 0, so (ko, ... km)
define a rational section of (JCo, ... , Km), and (ii) divisors of (ko, ... , km) and lj’s
have no intersection.

Setting Ko = 0* f-() for a line bundle ,Co on Y in (1. 1. 2), we will obtain

where ICi",’ s are restrictions of lCi’s on the fiber of a generic point q of Y. After
applying (1. 1.2) to the left-hand side of (1. 1.3), it suffices to construct an isomor-
phism
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Locally on Y, choosing an invertible section lo of £o and nonzero sections ki’s of
Ki’s will give trivializations of both sides of the above formula. It is easy to show
that this trivializations of both sides compatible with relation (1. 1. 1).

Setting JCm = cjJ* Ln+ 1 in (1.1.3), we also obtain

since the product of c; s in (1.1.3) is 0.
The second one is an induction formula. Let vr: X --&#x3E; S and ,Co, ... , ,.en be as

before. Let 1 be a rational section of ,Cn. Assume all components of div t are flat
over S. Then we have a canonical isomorphism

where if Z = EniYi is a cycle over ? with li flat, projective, and of dimension n
over S then

1.2. DELIGNE’S PAIRINGS WITH METRICS

Now assume that both X and S are defined over complex numbers, and f-0, ..., £n
have smooth Hermitian metrics. By a smooth metric on a vector bundle £ over X
we mean that for any holomorphic map f from a complex manifold Y to X, the
pull-back metric on f *.E is smooth on Y. One can define a metric on (,Co, ... , Ln)
as follows. For each 0 x i  n, let c; (Li) be the curvature of Li which is locally
defined as a,917rz» log 11111 ( for an invertible section l of Li. Then the metric on
(,Co, ... , Ln) can be defined by induction on n

It is not difficult to show that isomorphisms (1.1.2), (1.1.3), and (1.1.4) are iso-
metric, and (1.1.5) gives the following isometry
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where for a function f (s) on S, 0 (f ) denotes the trivial line bundle 0 with metric
111/1 ==exp(-f).
When X is smooth over S, Deligne’s pairing with metrics are constructed in

[D, Sect. 8.3] and [E2]. In this case one can show that the metric is smooth and has
curvature Ix/s fi£=o c’ (Li)’ For a general X, the metric is not necessarily smooth.
However, we expect it to be continuous. When dim S = 1, the continuity follows
from the induction on n and Proposition 1.5.1 in [B-G-S]. When X is embedded
in a projective space IpN x S over S and Li’S are the pullback on X of the 0(1)
line bundle of JP&#x3E;N with the standard Fubini-Study metric, then the continuity will
follow from Theorem 1.4 and Theorem 3.6.

1.3. CHOW SECTIONS

We summarize some constructions and results in [F-M], 5.3.4 and [B-G-S] 4.3.1
and 4.3.2(i). Let S be an integral scheme, £ be a vector bundle on S of rank N + 1,
and X be an effective cycle of IP’(£) = Proj(Sym* ?) whose components are flat
and of dimension n over S. Let Land ,M denote the 0(1) bundles of P(S) and
IP(SI) respectively. Then the canonical section of E 0 S’, which is dual to the
canonical pairing £v @£ -+ Os, gives a section w of f- 0 ,M on IP(.E) x ]P(,Ev). Let
.Mi denote the pullback on rji o IP(ev) = p(,cv)n+l via the ith projection, and let
wi’s be the corresponding sections of L@Mi on IP (S) x IP (S v) 1+ 1. Let r denote the
intersection of divisors of wi’s. If we consider the points of IP(EV) as hyperplanes
of If(£), then the points (z, Ho,..., Hn) of rare such that x E ng=oHj . Consider
r as a correspondence from IP (,E) to Ip (,Ev) n+ 1. Then Y = r* (X) will be a divisor
of degree (d, ... , d) of Ip (S V) n+ whose components are flat over S, where d is the
degree of X over S.

Let N be the 0(1) bundle of JP&#x3E;[(Symd £)Q9(n+I)]. Then the canonical pairing
gives a section w’ of (Symd.E)o(n+l) (D (Synld.Ev)o(n+l) which in tum gives a
section of the bundle N @ Mg 0, .. © M£ on IP’[(Symd £)Q9(n+I)] x lp(,Ev)n+’. Let
r’ denote the divisor of w’. If we consider points of IP[(Symd £)Q9(n+I)] as hyper-
surfaces of Ip (Sv) n+ of degree (d, ... , d) then r’ has points (H, Yo, ... , Yn) such
that (yo,..., Yn) e H. The section Z ofJP&#x3E;[(Symd £)Q9(n+I)] over S corresponding
to Y defined as above is called the Chow section for X. We have Y = r" (Z),
where r’ is considered as a correspondence. The following result is a local version
of a result of Philippon and Soulé ([Sol], [P], [B-G-S]).

THEOREM 1.4. There is a canonical isomorphism on S

Proof. We use the following notations
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Let p dénote the projection P(£) x P (S v) - + 1 ---&#x3E; P (.E), then

Similarly let p’ denote the projection lp[(Sym, E)O(n+,)] x lp(ev)n+l -
lp[(Symd S),D(n+l)]@ then
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Now the theorem follows from (1.4.1) and (1.4.2).

1.5. CHOW METRICS

Now we assume that S is a complex variety and E has a smooth Hermitian metric
)] . Il. It induces Fubini-Study metrics on G, M, and N. All these metrics and
their products are denoted by 11 - 11. We define a new metric 11 . Ilch on N which
1 call Chow metric as follows. Let w’ be the canonical section of Af 0 o’ omi
corresponding to the canonical section of (Symd S)o(n+l) 0 (Symd ev)o(n+l)
Then Ilw’ll is a function on IP[(Sym d S)o(n+l)] ] x p(.Ev)n+l. For a section s of N
we define

If 9 is a point and £ = CN+ 1 with the standard Hermitian structure, then

IP[(Symd £)(n+l)] has ahomogeneous coordinates (za), where a are multi-indices
for monomials of degree (d,..., d) on IpN: cx = (ai,j), 0  i  n, 0  j  N,
ai,j &#x3E; 0 are integers and jai,j = d for each i. A section of s of N can be written
as E,a,s,. For a point (za) ofIP’[(Symd S)o(n+l)]@ we have

where x, = Tj2 xa’.,j are monomials on e(N+I)(n+I), S(eN+I) is the unit sphere
of eN + 1 , and dx is the invariant measure on S ( eN + 1 ) n+ 1 with Volume 1.

The following theorem is a local version of a result of Soulé and Philippon
([Sol], [P], [B-G-S]) at the Archimedean places.

THEOREM 1.6. With the metric on Deligne pairing (,C, ..., £) and Chow metric
defined on iV, the isomorphism in 1.4 is isometric.
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Proof. By 1.2, the 1 st, 2nd, and 4th isomorphisms of (1.4.1) are isometric. By
(1.2.1), the 3rd isomorphism induces the following isometries

Notice that the function inside 0 which we denote as f (s) commutes with base
change of S. We may compute f by assuming that S is a point and £ = CN+l
with standard Hermitian structure. Then w = Ey oxi 0 yi where xi’s and Yi’S
are homogeneous coordinates of IP(S) and JP&#x3E;(£V). Notice that the action of the
unitary group U(N + 1) on ith factor of I1i==o P(Ev) induces an action on p*X
I1ji div(wj) and the measure [Aj&#x3E;i c[ (£j © Mj)] . [/Bi==oc(Mi)N] is invariant
under this action. So we may replace log wi by its integral on IP (E v). Now for
any point x = (xo, - - - , x.) e ip(S)

Changing coordinates suitably, we have
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This is by a computation of Stoll. It follows that

One has an isometry

Similarly, the 1 st, 2nd, and 4th isomorphisms of (1.4.2) are isometric. By (1.2.1)
the 3rd isomorphism gives the following isometry

This gives isometry

The theorem follows from (1.5.1) and (1.5.2).

REMARK 1.7. As pointed by the referee, maybe one can prove Theorem 1.4 and
Theorem 1.6 by using the formalism of Franke and the proof of Theorem 4.3.2 in
[B-G-S]. We leave this task to interested readers.
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2. Semistable réduction theorem at Archimedean places

2.1. DEFINITIONS. Let X be a projective complex variety, f- be an ample line
bundle on X, and Il - Il be a continuous metric on G. We give the following working
definition for positivity and semipositivity of the metric Il.11. We say 11 - 11 is positive
(resp. semipositive) if for any holomorphic morphism f : JI)) == {z E C : Izi  1} 
X, the curvature cl (M) = oB / 7ri log Il m Il of the pullback metrized line bundle
NI = f * (f-, Il . II) is positive (resp. semipositive), where m is an invertible section
of M. This means that for any smooth function 0 on D with compact support, the
integral

is positive (resp. semipositive) if 0 is semipositive and nonzero.
Now fix a metric 11 - 11 on G in this section. LetÈ denote the metrized line bundle

(f-, Il - 11). Let G be a complex connected reductive group, and let U be a maximal
compact subgroup of G. By a Hermitian action of (G, U) on (X, Ê) we mean a
linear action

of G on (X, G) such that cpluxx is an isometry of Hermitian line bundles.
We fix a Hermitian action of G = (G, U) on a (X, £). Then 0 induces an

isometry cp: o,*,É - p*£- 0 0(li), where M is a function on G x X, and 0(p)
denotes the trivial bundle with metric 11111 ] = e-t. Let x EE X, 1 E £ (x) - {O}. Via
cp we may consider 1 as a section of G on the orbit Gx. Then we have a formula
for M

For a fixed x, p(g, x) can be considered as a function on G or on the orbit Gx.
By an one-dimensional parameter Hermitian subgroup of G we mean an injec-

tive homomorphism À : Gm = U,,,,) -&#x3E; G = (G, U), namely, an injective
morphism from Gm to G such that the image of unitary elements U,.,, = Iz e C* :
1 z 1 = 11 is contained in U. We abbreviate this to ’À is a 1-phs of G’ .
A point of x is called critical with respect to the Hermitian action, if for any

1-phs À of G, the function f(t) = J-L(À(et), x) is critical at t = 0

Our main result of this section is the following generalization of a result of
Kempf and Ness [K-N], they worked on the projective space with a Fubini-Study
metric.

THEOREM 2.2. Let (X, ,C, G) be assumed as above, and let x be any point of X.
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(1) The function M (g, x) is bounded below as a function on the orbit Gx if and
only if x is semistable with respect to the linear action of G. Moreover, if x is
stable then the infimum value of this function is reachable on the orbit Gx.

(2) If the metric Il.11 on £ is semipositive, then infgEGJ.-l(g,x) == J-l(e,x) if and
only if x is a critical point of X where e is the unit element of G. Moreover,
the set of critical points is connected in Gx, and this set is nonempty if x is
stable.

(3) If the metric ]] . ]] is positive, then the set of critical points in Gx contains at
most one orbit of U.

Proof of the 1 st Part of 2.2. For the first statement we notice that the bounded-
ness of J-l will not be changed if we change the metric on C or replace £, by some
positive power. By these it is easy to reduce the problem to case that X = IPI,
L = 0(l) with the Fubini-Study metric, and the action is induced by a Hermitian
action of (G, U) on eN + 1 with the standard Hermitian structure. Let x* E eN + 1
be a point which has the image x on IpN. Then

Now J-L(g, x) is bounded below on Gx if and only if 0 g Gx *, or if and only if x is
semistable.

By the same argument as above we will.obtain that for a stable point x and
a positive number M the set {gx: M (x, g)  M} is closed in X. The second
statement of Part 1 follows.

To prove other two parts we need to show the positivity of the second variation
of /oe.

LEMMA 2.3. Let A be an 1-phs of G = (G, U) and x be a point of X. Let
f (t) = J-L( À( et), x) as a function on IIB.

( 1 ) If the metric on L is semipositive then f (t) is concave up on R- for any two
real numbers a and b

(2) If the metric on G is positive then f (t) is strictly concave up on R. for any two
distinct real numbers a and b

Proof. Let g: C ---&#x3E; X be the holomorphic map such that g(z) = À(eZ)x and
NI = g*G with pullback metric which we still denote as Il . Il. It is positive (resp.
semipositive) if the metric on L is positive (resp. semipositive). Let 1 be a nonzero
section of .C at x with norm 1 and m = g*l. Then f (t) = - log Iimii (t). Since the
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metric on G is invariant under the action of U, the function - log 11 m 11 (z) as on C
is invariant under transformation z - z + bi for any b e R. In other words it is
determined by its restriction f to real numbers

We claim that f" as a distribution on smooth functions with compact support on R
is positive (resp. semipositive) if /1 . lion M is positive (resp. semipositive). This
means that for any bounded open subset V of R and any smooth function g with
compact support on V, the integral

is positive (resp. semipositive) if g is semipositive and nonzero. Our lemma will
follow this claim and a well known fact that a continuous function f : R --&#x3E; R is

convex (resp. strictly convex) if and only if the distribution (resp. positive with
support R). See for instance Theorem 4.1.6 in [H]. (I am grateful to the referee for
telling me this reference.)

Let us prove our claim on f". Assume (M, Il - ,,) is positive (resp. semipositive).
Fix an open subset U of R and a positive smooth function h on U with compact
support and integral 1. For any smooth function g with compact support on U,
setting 0(x + yi) = g(x)h(y) and noticing that

we have

It follows that the integral fR f g" dx is positive (resp. semipositive) if g is semi-
positive and nonzero. Our claim and therefore the lemma follow.
We also need the Cartan decomposition theorem:

LEMMA 2.4. Let S be the set of 1-phs of (G, U) then
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2.5. PROOF OF 2ND AND 3RD PARTS OF (2.2)

Let y = gx z, x be any point in the orbit containing x. By the Cartan decomposition
theorem we have an 1-phs À, a real number to, and a unitary element u e U such
that g = uA(eto). Let/M = li (À (et), x) then

If L is semipositive then f is concave up by (2.3), the only critical points of f are
minimal points, and the set of minimal points must be a closed interval. This implies
that x is a critical point if and only if at x the function M has minimal value. If both
x and y are critical points then all points in the curve y(t) = uA(et)X (0 1 t 1 to)
are all critical points. The first two statements of Part 2 follow immediately. The
third statement of Part 2 follows from these two and Part 1.

If G is positive then f is strictly concave up, so f has at most one critical point.
If x and y are both critical points then to = 0. It follows that y is in the orbit of U
containing x. This proves the third part of (2.2).

The proof of (2.2) is complete.

2.6. SEMISTABLE REDUCTIONS AT NON-ARCHIMEDEAN PLACES

Instead of complex variety we may also consider a variety defined over an alge-
braically closed nonarchimedean field. Let K be a discrete valuation field with
valuation ring R. Let X be a projective and flat variety over Spec R and Ê be an
ample line bundle on X. Let G be a geometrically connected group scheme over
Spec R with a linear action on (X, .C). Denote by X, £, G the geometric fibers of
X,,C, G on Spec K, where K is an algebraic closure of K with valuation ring R.
Let be the K norm on G induced by the integral structure L, and let U denote
G(R). Then G acts on (X, G) and the norm Il . Il is invariant under the induced
action of U.

By an one-dimensional parameter Hermitian subgroup of G we mean an injec-
tive homomorphism A: G,,, = U,-,,) -+ G = (G, U) which is induced by an
injective homomorphism À: G,.,, -- G over Spec R of group schemes. As before
we abbreviate this to ’À is a 1-phs of G’.
We define M (g, x) as in Section 2.1. We fix a uniformizer 7r of K and a set of

roots {vr: n == 1,2, ... , } such that (7r 1 /,n) , = 7r 1 /n. For any rational number
t = a/b, ((a, b) = l, b &#x3E; 0) we define 7r’ to be (7rI/b)a. Then for any 1-phs À of G
we define f (t) == J.-l (À ( 7rt), x) over Q. It is easy to see that the function f (t) does
not depend on the choices of 7r and its roots. We call a point x in X critical with
respect to the Hermitian action, if for any 1-phs À, the function f(t) = (À (7rt), z)
is critical at t = 0 as in (2.1 ).

THEOREM 2.7. Let (X, G, (?) be assumed as above, and let x be a point of X.



90

(1) The function M (g, x) is bounded below as a function on the orbit Gx iff x is
semistable with respect to the linear action of G. Moreover if x is semistable,
then the infimum value of this function is reachable on the orbit Gx.

(2) The equality infgEG M (g, x) == J-l( e, x) holds iff x is a critical point of X where
e is the unit element of G. Moreover, if x and y = gx are both critical points,
writing g = uoÀ(7rtO) with u in U and t in Q by the Cartan decomposition
theorem, then for any u E U and any t between 0 and to, the point uÀ( 7rt) is
critical.

(3) The set of critical points of X is the set of points of X which have semistable
reductions over Spec R. Moreover any stable point has a semistable reduction.

Proof. (1) Replacing £, by a power and embedding X to projective spaces by
sections of £’, we may assume that X = IP’n and £, = 0(1) with metric induced
from the standard metric on [(n+ 1

For x * E Kn+ 1 be a point which has image x in IP’n, then

The function M (g, z ) is bounded below on Gx if and only if Ilgx* Il is bounded below
by a positive constant. The first statement of Part 1 of the theorem follows from
the definition of stability, while the second statement follows from Proposition 2
in [Bu].

(2) Let y = gx be any point in the orbit of x. By the Cartan decomposition
theorem we have an 1-phs À, a rational number to, and a element uo e U such that
9 = uoÀ( 7rto). Let f (t) = {l( À( 7rt), x) then

Diagonalizing Kn+l according to the action of À, we may assume that

where ao,..., an are integers. If x* = (xo,..., xn) has image x then

So f (t) is a concave up function of Q. The only critical points are minimal points,
and the set of minimal points must be a closed interval of Q. This implies that x
is a critical point iff at x the function p(g, x) has minimal value. If both x and y
are critical points then they are minimal, so are points with form uÀ( 7rt) for u e U
and t between 0 and to. This proves Part 2.

(3) This follows from Part 1 and 2, and Proposition 1 in [Bu].
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3. Réductions of stable cycles at Archimedean places

3.1. DEFINITION OF CRITICAL METRICS

By an effective cycle of dimension n, we mean a cycle of a codimension 0 on
a reduced scheme Xred = U Xi whose irreducible components are of dimension
n: X = imiXi, mi 0. Let ,C be a line bundle on Xred, and let V C r(X, £)
be a linear system of dimension N + 1 which defines an embedding Xred C IP’(V).
We say X is stable (resp. semistable) with respect to V if the corresponding Chow
point in IP [Symd(V)o(n+l)] is stable (resp. semistable), where d = imi deg.c (Xi)
is the degree of X. Now we assume that Xred is a complex projective variety.
Let Il . Il be a semipositive and smooth metric on ,C. We can define the distortion
function bll’II (x) on Xred as follows. Let (, ) be the L2-Hermitian structure defined
by the metric Il - Il on ,C as follows

where dx = c’ (f-, 11 . 11) ’ / deg X is the induced measure on X. Let {80, ... ,8 N }
be an orthonormal basis of V with respect to this Hermitian structure. Then

It is easy to see that bll’II is independent of choice of the si’s and has integral 1. We
say that 11 - Il is critical with respect to V if bj j , j j = 1. The main result of this section
is the following theorem.

THEOREM 3.2. Let X, G be given as above.

(1) If Il ] . Il is a critical metric on .( with respect to V then X is semistable with

respect to V.

(2) If X is stable with respect to V then there exists a unique critical metric on .(
with respect to V.

3.3. A CHARACTERIZATION OF CRITICAL METRICS

We say a metric Il . IIFS on .( is the Fubini-Study metric induced by a Hermitian
structure on V if for an orthonormal basis {so, ..., SNI of V

First of all we claim that a metric il - il on £ is critical with respect to V if and only
if Il . Il 2= (N + 1)11 . . 112s, where Il . IIFS is the Fubini-Study metric induced by
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L 2-Hermitian structure induced by 11 - Il. In fact, let f so, - - . , SN} be an orthonormal
basis of V induced the norrn ]] . ]] on G. The induced Fubini-Study metric 11 - 11 FS is

which is IlsI12(X)/(N + 1) if and only if llsiI12(x) = N + 1, and by definition if
and only if ] ] . ] is critical.

By this for the proof of (3.2), we may restrict our discussions on Fubini-Study
metrics induced by the set M of Hermitian structures on V. For any m E M, let
Lm == (L, Il.llm) be the line bundle G with the corresponding Fubini-Study metric.
Then the Deligne pairing L+l) is the one-dimensional vector space L(n+l) with
a metric depending on m. Fix one m in M. For any g in SL(V) one defines a new
Hermitian structure gm as follows: for any v E V, Ilvllgm :== Ilgvllm. Let v(g) be
a real function on SL(V) defined by the isometry [,r:n+l) [,+l) @ O(v(g)).
Then we have the following characterization of critical metrics.

THEOREM 3.4. The Fubini-Study metric induced by the Hermitian structure m
on V is critical with respect to V if and only if, for any 1-parameter subgroup
À: C* - SL(V) which sends elements with absolute value 1 to unitary elements
of SL(V), the real function f (t) = v( À( et)) is critical at t = 0.

Proof. To give an 1-parameter subgroup À as in the theorem is equivalent to
give an isometry V - CCN+I and integers ai (0 z i z N) such that £aj = 0. The
corresponding action À (g) has the form

Fix a À and choose an isometry V - CN+ 1 and ai’s as above. Let Ot be the real
function defined by the isometry

then

To prove the theorem, we need to study the leading terms of the Taylor expansions
of Ot and (oa / 7ri) CPt. Let s be a section of 0(1), then
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where 11 S 1 1,,,,Fs be the Fubini-Study metric induced by the Hermitian structure m
of V, and Ilxill == ,, 1 Xi 12 is the norm of zj as a section of G. Using the
identity E,IIX,112 == 1, one has

where O(t2)’s are all smooth functions on IP’N for small t. Similarly

where O(t)’s and O(t2)’s are smooth functions and smooth forms on IP N for small
t. Bring these to (3.4.1 ), one has
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where Il . 11£2 is the Hermitian structure on V induced by the Hermitian metric on
£m and the measure dx = c’ (Lm)n+l / deg X. From (3.4.2), one sees that f(t) is
critical at t = 0 for all 1-parameter subgroup of SL( V ) as in the theorem if and only
if for any orthonormal basis f so, ... , sN} of V and any integers ai (0  i z N)
with Eai = 0, the following equation holds

Since £i ] ] zi ] ] ) = N + 1, f (t) is critical at t = 0 for all 1-parameter subgroup
as in the theorem if and only if {80, ..., sN} is an orthonormal basis of V with
respect to the Hermitian structure induced by the metric on Now the theorem
follows from the discussion in (3.3).

3.5. PROOF OF (3.2)

Fix a Hermitian structure m on V. Let z E IP’[(Symd V)(g)(n+l)] be the Chow point
corresponding to X. Then (1.6) gives a canonical isometry _,n -- N(z), where
N is the O(1) bundle ofJP&#x3E;[(Symd V)(g)(n+l)] with the Chow metric defined in (1.5).
It follows that v(g) = p(g, z), where M is defined in (2.1). Now (3.2) follows from
(3.4), (2.2), and the positivity of the Chow metric on N:

THEOREM 3.6. For the standard Hermitian structure on £ == CN+I, consider
the induced Chow metric ] ] . 1 Ch of the 0(1) bundle N on IP’[(Symd CN+1)0(n+l)] ]
defined in (1. 5).

(1) The metric ] ] . Ilch is continuous and positive in the sense of (2.1).
(2) The metric ] ) ’ Ilch is ample. This means that for any point x in X and any

E &#x3E; 0, there exists a nonzero section l of a positive power Nm such that

Proof. (1) We prove the continuity first. By definition in 1.5 we need only prove
that the integral

defines a continuous function on IP[(SyMd CN+I )Q9(n+I)]. We prove this by using
an argument in the proof of Proposition 1.5.1 in [B-G-S]. Let (p, q) be a point
in JP&#x3E;[(Symd CN+I )Q9(n+I)] x JP&#x3E;(£,V)n+l. Then in term of local coordinates x --
(XI, X2, ... , X N(n+l)) in a neighborhood of p, we can write
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where a(p, x) and g (p, x) are smooth functions of p and x, and f (p, x) is polynomial
in z with coefficients holomorphic in p. By Weierstrass’ preparation theorem, after
a possible linear change of the local coordinates x, we may write in a neighborhood
of q

where sj and u are holomorphic functions such that u (p, 0) i- 0. By Lemma 1.5.3
in [B-G-S], for a small neighborhood U of 0 in C, a small neighborhood V of 0
in CN(n+l)-I, a small neighborhood W of p in IP[(SyMd CN+I )0(n+I)], and any
smooth function p(XI," . XN(n+I)’P) in U x V x W with compact support, one
has that the integral

defines a continuous function ’l/J(X2, ... , X N(n+l), p) on V x W. By Fubini’s The-
orem we have

It follows that the integral

defines a continuous function on W. Using partitions of unity, this shows the
continuity of

Now we want to prove the positivity. Let f : B ----&#x3E; IP [(SyMd CN+I )0(n+I)]
be a finite morphism. We need to show that for any smooth function 0 on B with
compact support, the integral fD Oc-’ ( f * (N, Il . 11 Ch» is positive if 0 is semipositive
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and nonzero. Let r’ E IP[(Symd CCN+I )0(n+I)] x IP’(CCN+l )n+l be the universal
hypersurface in IP’(CCN+I )n+l of degree (d, ... , d). By (1.5.2) we have an isometry

where Mi endows with Fubini-Study metric and K is a constant line bundle with
a constant metric. By [D, Sect. 8.5] we have

Let p : r/y - BD be the pull-back by f of r’ - IP’[(Symd CN+I )(n+l)]. Since
f is finite, the morphism q: r£ - JP&#x3E;[(Symd CN+I )(n+l)] is generically finite.
There is a Zariski open subset U of TD which is étale over IP’[(Symd CN+I )(n+l)].
The image V = q(U) of U is a nonempty open subset (in the complex topology)
of JP&#x3E;[(Symd CN+I )(n+l)]. If § is semipositive and nonzero, then

This proves the Part 1 of the theorem.

(2) By Part 1 and Theorem 2.2 in [Zl] (Please notice that the ample metric here
was called semiample metric in [Z1]), we need only show that for a projective space
Elm and a positive continuous metric Il - lion 0(1), there is a sequence of smooth
metrics Il . lin on (9(1) convergent uniformly to Il . Il and such that the curvatures
of Il . lin are positive. Let 0 be a positive function on U := U(M + 1) such that
fu 0 du = 1 where du is the invariant measure on U with volume 1. We define a
new metric Il . Il if; on 0 (1) as follows. If s is a section of 0 (1), then

where U acts on both 0 (1) and IPM in the standard way. We claim at first

that || . 110 is smooth. For this let || . 110 be the standard Fubini-Study metric
which is smooth and invariant under the action of U. Consider functions f (x) ==
iog(11 . Il (z)/ 11 110(x» and fo(x) = log(Il - Il et&#x3E; ( x ) / Il 110(x) then
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Fix a point xo on Pm, and let p : U - IPM be the map p(g) = gxo. Then
p* (fo) (g) = fu p* (f ) (u-’g) 0(u) du, now p* (fo) is smooth by standard argument
on convolution of distributions. Since p is surjective and smooth, it follows that f 4J
is smooth, and so is ] ] . 114J. We claim at second that Il . 114J has positive curvature.
This follows from the following identity of distributions and the positivity of 0

Finally we choose a sequence of positive smooth functions 4Jn on U such that
supp(o,,) ----&#x3E; {e} as n - oo, where e is the unit element of U. Then the metrics
Il . IICPn converges to|| . Il. This proves the second part of the theorem.

3.7. QUESTIONS

(1) Let X be a variety in P(V), where V is a finite dimensional vector space over
a discrete valuation field K with valuation ring R. Assume that X is stable in
P(V). Then (2.7) tells us that after replacing K by a finite extension, there is a free
submodule V over R such that the Zariski closure X of X in P(V) has a semistable
special fiber. Motivated by (3.2), 1 would like to ask the following question: Can
one describe X without the reference to group action? For example, by Mumford
[M, Sect. 5.1], a (moduli) stable curve X in sense of Deligne-Mumford [D-M] is
stable in JP&#x3E;(r(wx)) when n &#x3E; 5.

(2) Let X be a smooth complex variety and let f- be an ample line bundle such
that X is stable inr (,en) for n &#x3E;, 1. Fix a section 1 of G at a point x in X. Let 11 - 11 -
be the metrics on £ such that 1 n = 1 and Il . ]]§§ give critical metrics on .en by
(3.2). Motivated by a conjecture of Mumford on the existence of asymptotically
stable limits [F-M, p. 187], 1 would like to ask the following question: Does the
critical metrics Il . 11 n converges to a continuous metric on f- ?

(3) Let X be a complex curve or surface with ample canonical line bundle wx. By
Gieseker [G], Mumford [M] we know that X is stable in ]r(wn ) for n sufficiently
large. (For higher dimensional varieties, Viehweg [V] proves some stability on
Hilbert points.) By Riemann’s uniformization theorem and Yau’s Theorem [YI]
we know the existence of Kâhler-Einstein metric on X. If the critical metrics on
w x converges, is the limit equal to a Kahler-Einstein metric? 1 should mention
that the idea that projective stability is related to the existence of a Kâhler-Einstein
metric is due to Yau and Tian ([Y2], [T], [D-T]).

4. Heights of semistable cycles

4.1. DEFINITION OF HEIGHTS

With S = Spec 7,, E = ON+l , and the standard Hermitian structure at E (D C ==
CCN + 1 , constructions in Section 1 give a Chow metric || . IlCh on the O ( 1 ) bundle
of IP’[(Symd S)o(n+l)]. Let (P, À, Il . IlCh) denote the uniform categorical quotient
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of semistable points of (JP&#x3E;[(Symd £,)@(n+I)],N, Il . Ilch) by the action of group
scheme SL(N + 1). Notice that for a section k of À at p E P, the norm I/kl/ is
defined to be the supremum norm of k on the fiber of IP’[(Symd E)O(n+l)] over p,
where we also consider k as a rational section of N on this fiber [Bu, Z2]. We
will show at the end of the section that the metric on À is continuous and ample.
For any semistable cycle X of dimension n and degree d in JP&#x3E;g, let p e P (ij) be
the quotient of the corresponding Chow point. We define the G.I.T height h(X) to
be h (À, 11. 11) (x) / (n + 1)d. Notice that if x is defined over a number field K which
extends to a finite morphism * : Spec OK ---&#x3E; P then h,À,II’11 (x) == deg i* (À, Il . ]] ) /
[K: Q]. 

For a (not necessary semistable) cycle X C ]pN defined over a number field K
and a Hermitian vector bundle E on Spec OK with an isomorphism ÉK ri K N+l
let X be the Zariski closure of X in IP(S) and Le be the restriction of the O(1)
bundle of IP (S) on X. We define the height h,, (X) of X with respect to E by the
following formula

It is easy to see that h£ (X ) is invariant if we replace K by an extension and replace
X and E by their base changes. The following proposition gives a characterization
of G.I.T height without reference to group action:

PROPOSITION 4.2. Let V be the direct limit of the set VK of vector bundles on
Spec O K with an identity E 0 K = K N+ as K varies in the set of number fzelds.
Let X be a cycle of JP&#x3E;N+I over Q.

( l ) The cycle X is semistable if and only if hE (X) is bounded below as a function
of E E V.

(2) If X is semistable then h(X) = infEEV hs (X) .
(3) If X is stable, there is a Hermitian vector bundle E in V defined over a number

field K such that (i) the canonical isomorphism det E (D K - k induces an
isometry det E 2-- OK, (ii) the Zariski closure X of X in JP&#x3E;(£) has semistable
fibers at all finite places, and (iii) the Hermitian structures at archimedean
places of K induces the critical metrics on 0(1)1x.

(4) If X is semistable, let X* be a stable limit cycle of X in JP&#x3E;N. Then h(X) ==
h£(X*) where E is defined for X* as in Part 3.

Proof. For any E E VK, replacing K by an extension, we may assume that
det E - £ N + 1 is a power of a line bundle C with an identity £ K = K which
is compatible with the identity det£K = K. Let E’ = E 0 f-- 

1 
we see that

he (X ) = he, (X ) and the identity S’ K = K N+ induces the indentity det S’ = O K .
By replacing -E by El, we assume that E already has the property of £’.

For any place v of K, let gv be an element of SL(N + 1, Kv) such that (i) if v
is finite, Sv = gv°E’+1 where we consider both sides as subsets of Kt’+l and (ii)



99

if v is infinite, for any element x E Kt’+l, Ilxll£v = Ilgvxllot’+l. It is easy to see
that (gv) is in SL(N + 1, A 0 K) and E is uniquely determined by (gv ) in the coset
K B SL(N + 1, A 0 K) where K consists elements whose components at a place v
are in SL(N + 1, Ov) if v is finite and in the unitary group U(N + 1, Kv) if v is
infinite.

Let X (resp. X’) be the Zariski closure of X in lp(ON+I) (resp. JP&#x3E;(£)). Let £
(resp. G’) be the restriction of the line bundle (9(1) to X (resp. X’). Let x be the
Chow point in IP[(SyMd K N+I)o(n+l)] corresponding to X. For each place v, let
M (g,, z) be a real number defined by isometry as in (2.1) and (2.6)

Notice the embedding Xv = X’ 0 Ov - IP (E,) is isomorphic to the embedding
of the Zariski closure of (X) in Ip(ON+I). By (1.4) and (1.6), the isomorphism
on Spec K induces an isometry of line bundles over Spec Kv

This gives

By (2.2) and (2.6), if X is not semistable then J-l(gv, p) is not bounded below
as a function of gv, the formula (4.2.1) shows that he (X) is not bounded below.
If x is semistable, let p be the corresponding point on P. Then at each place v,
À(p) rr jV(x) 0 O(infgv J-l(gv, z)), therefore h (X) = infE h£(X). This proves
Part 1 and 2. If x is stable, then at each place v, by (2.1), (3.2), (2.7), there is a
point gvx in the orbit SL(Kv, N + I)x such that 9,x has semistable reduction and
inf 9v J-l (gv, x) == M (gl, x). The vector bundle E corresponding to (go) will satisfy
the conditions of Part 3. Part 4 follows from the fact that À (X ) = h(X*) since they
correspond to same point in P.

4.3. POSITIVITY OF À (X )
The lower boundedness of hs has already been proved by Comalba-Harris [C-H]
in the function field case and Bost [Bo] in the number field case. Part 1 of (4.2)
therefore gives inverse of their results. In function field case we may say more: Let
X be defined over k (t) over a constant field = k in stead of Q, then P is replaced
by Pk = P x Spec k. Let p be the corresponding point for X. Then h(X) = 0
if and only if p is defined over k. In other words, every stable limits X* of X is
defined over k. The nonnegativity has already proved by Comalba and Harris, and
the implication h(X) = 0 =&#x3E; X defined is already proved by Bost when X is
stable. 1 would like to conjecture that this is still true in number field case. Here we
want to prove the following lower bounds:
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THEOREM 4.4. If X C P§ is semistable, then

where

is the Faltings height of the projective space IpN.

Our proof is based on a recent paper of Soulé [So2]. He proves that hs (X) +
deg É / (N + 1) [K: Q] is bounded below by the average of the successive minima.
By the Bombieri-Vaaler version of the Minkowski Theorem, his result gives a
lower bound of hE depending on K over which E and X are defined. Our basic
improvement is to eliminate this dependence. We start from the Gieseker-Mumford
criterion on stability:

LEMMA 4.6. Let X == £§=jrnjXj be an effective and semistable cycle in IP’N
over a field k, let ro,..., rN be integers such that Eri - 0, and let &#x3E; 0 be any
number. Then for p » 0, there are monomials of xi of degree d, FI N xjijk z , S,
1 j  hpi :== dimr(Xi, 0 (p) 1 xi », such that (i) for each i (1 , Z"  s), monomials
o xaijk (1 j  hpi) generate r(Xi, O(1:1)IXi’ and (11)

Proof. By approximation, we may assume that ri are rational numbers.

By eliminating denominator we may assume that all ri are integers. Let z e
IP[(Symd kN+I)o(n+’)] be the Chow point for X, let À be the 1-parameter sub-
group defined by ri’s then A (t) z be the Chow point for A (t) X. Let jL(À(t), z) be
the integer such that the isomorphism over k(t) gives isometry (i.e isomorphism
over k[t])

Since z is semistable, we must have Il(À(t), z) &#x3E; 0, see (2.6).
For each i, let zi be the Chow point of Xi on JP&#x3E;[Symdi (kN+I 1) n+ 1 and M (À (t), zi )

be defined as above. By linearity of the Deligne pairing and Theorem (1.4) one
has M(,B(t), z) = £jrnjp(À(t), zi). Now the lemma follows by noticing that
-1l(À(t), Zi) is the leading term of weights of r(X, O(p)lxi) as p approaches
to infinity.

The following lemma is also crucial in the proof of (4.4).
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LEMMA 4.7. Let E be a Hermitian vector bundle on Spec O K. For any E &#x3E; 0,
there is an extension K’ of K and line subbundles f-0, ..., LN of E such that Li’S
generate E over Spec K and

Proof. For an arithmetic variety X defined over Spec OK and an ample line
bundle £ with a semipositive Hermitian metric, we define the height function
h : X (Q) - IR as follows. For any x E X(ij), let £ : Spec OK(x) ---&#x3E; X be an
extension over Spec OK, then h(x) := deg(fi(£)) /[K(x) : Q]. For each i between
0 and n = dim XK, define

where Y runs throught the set of closed subvarieties of XK. By [Zl, Sect. 5.2] we
have

Applying this formula to X = IP’(£V), one obtains points xo, .... xN in X (Q) such
that XO, ..., xN are not in any hyperplane, and

Here we use the equality el (£)n+l == deg f,v + h(JP&#x3E;N) proved in [B-G-S], Sec-
tion 4.1.2, (4.1.4). Let K’ = K(xo, ... , xN) and let Ci be the line subbundle of É
corresponding to xi. Then the above formula gives the estimate of the lemma.

4.8. PROOF OF (4.4)

Write X = EmiXi with Xi integral. By (4.2), it suffice to prove that h,,(X),&#x3E; -
(IIN + 1 )h(IP’N) for any Hermitian vector bundle E over some Spec OK such that
deg E = 0. By Lemma 4.7 for any - &#x3E; 0, there are line subbundles ,Co, ... , £N of
f, which generatee generically and

For each i, let xi be a nonzero section of Li. These sections give an embedding
X - JP&#x3E;N. Set ri == -degLi + 1 /N + 1£ào deg £i. Then by (4.6) for p » 0,
there are monomials of x2 of degree d, nf==o x;ijk (l z 1 z s, 1 z j z hpj :=
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dimr(Xi, O(P)IXi))’ such that (i) for each i (1  i  s), monomials nf=oxjijk
(1  j  hpi) generates r(Xi, 0 (p) 1 xi), and (ii)

Let 7T: Xi -i SpecOK be the structure morphisms, and let 7r*(O(P)IXi)Q be
7r * (0(p) 1 xi) endowed with the quotient metric from SymP(£), then we have mor-
phisms of vector bundles which are isomorphisms over Spec K

Since the norm of this morphism is x 1, we have

By (4.8.1) and (4.8.2) we therefore have

Let Jr* (O(p) [ x; )sup be Jr* (O(p) [ x; ) endowed with supremum norme Then
Il ’ Ilsup, therefore

The arithmetic Hilbert-Samuel formula [Zl, Sect. 1.4] gives
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Now the theorem follows from (4.8.3), (4.8.4), and (4.8.5).

4.9. CONTINUITY OF QUOTIENT METRICS

Now we want to show that continuity of the quotient metric for a Hermitian action.
This fact is implicitly used in [Z2] without proof. I am grateful to the referee for
pointing out this incompleteness in [Z2]. Combining Theorem 3.6 and the following
Theorem 4.9, we have that the metric on quotient line bundle A defined in 4.1 is
continuous and ample.

With notation as 2.1. Let X be a complex variety, G be an ample line bundle
with a continuous metric Il . Il. We assume that this metric is ample. This means
that for any x E X and any e &#x3E; 0, there is a nonzero section 1 a positive power £n
of G such that ||l|| sup  enélllll(x). Let G be a complex reductive group, and U be
a maximal compact subgroup. Fix a Hermitian action of (G, U) on (X, l).

Denote by 7r: X" ---&#x3E; Y = XSs / /G the uniform category quotient of the set
XSS of the semistable points of X by G. As schemes, X is Proj(ED,,&#x3E;OF(X, LI»
and Y is Proj(ED,,&#x3E; f n)G) . Denote by M the (9(1) line bundle on Y. Then
7r*M is naturally identified with £xss. We define a metric Il . ] ] q on ,M as follows:
for any ?/ e Y and m e M(?/)

THEOREM 4.10. The metric Il . Ilq defined as above on M is continuous and
ample.

Proof. The ampleness is already proved in [Z2] 2.4. We are remain to prove the
continuity. We will reduce the problem to case that (X, 0(1)) == (JP&#x3E;N, 0(1)) with
standard Fubini-Study metric. In this case the continuity is proved by Bumol [Bu]
using a result of Neeman. We will use repeatedly the following principle.

Given a sequence of continuous and convex norm functions 9n on r (X, .en )
(n » 1) which induces metrics Il . lin on G such that || . ] ] §§ are quotient metrics on
.en from gn through the morphisms

and also induces metrics ||. Il’ n on the 0(1) bundles Gn of Pn = IP(r,(X, Gn))
through the morphisms

Assume that gn is U-invariant then we have induced Hermitian actions of (G, U)
on (Pn, Assume that Il . lin converges to Il . lion £ (The convergence must
be uniform, since metrics are continuous). Then our principle is that the continuity
parts of the theorem for (Pn, Gn) (n » 1) imply that for (X, G). Actually on one
hand let il - liq and Il.llq,n be the metrics on .M on Y = XIIIIG induced from Il.11
and Il . lin, then Il . Ilq,n uniformly converges to 11 - 11 q . On other hand let Il . 11,n be
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the induced metrics on the quotient line bundles .Mn on Yn = P§§S / /G then there
are embeddings Y ---&#x3E; Yn such that jnMn = Ln and j * 11 - 1 l’ @ == Il Iln . Now
the continuities of Il . Il’q,n (n » 1) imply the continuities of Il . Ilq,n and in tum
imply the continuity of 11 . Ilq.

Since the norm Il - Il is the limit of the quotient norms Il . Ilsup,n induced from
the norm functions 11 . Iisup on (r(X, Ln) (n » 1) by continuity and ampleness
of Il . Il, it suffices to show the theorem for (P(r(X, f n) 0(1)) with metric on
0(1) induces from Il . Iisup. We therefore reduced the theorem to (X == IP’N, £ =
0(1)) where the metric on (9(1) is induced by a continuous convex norm function
g : (CN+1 _ (0) - R+ which is invariant under the action of U. Approximate this
norm by strictly convex smooth norm functions gn: CN+l _fol _-+ Il4. Notice that
Il. n may not be invariant under U. Average them over U : gn (x) = fu gn(ux) du.
Then 9n are smooth, strictly convex, U-invariant, and convergent to g. Replacing
g by gn, we may assume that X is smooth, and the metric on G is smooth and has
strictly positive curvature. For each n let hn be the Hermitian structure on r (X, f n)
induced by the metric on G and the curvature of G. Then hn is U-invariant. Let
||. Ilh,n be the metric on G whose nth power is the quotient metric induced from
the Hermitian structure hn. Then a theorem of Tian says that Il ’ Ilh,n converges to
|| Il. So we reduced to the case that X = IpN and f- = 0(l) with the Fubini-Study
metric.
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