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Let X = G/P be a homogeneous space of a semisimple complex Lie group G,
P being a parabolic subgroup, and let E be a homogeneous vector bundle on X.
Assume that E satisfies the following positivity condition: the highest weights of
the associated P-module are dominant. It is then a standard consequence of Bott’s
theorem [3, 5, 19], that E is spanned by global sections and has no cohomology
in positive degrees, Hq (X, E) = 0 for q &#x3E; 0. The aim of this paper is to prove
extensions of this vanishing property to Dolbeault cohomology, HP,q(X, E) =
Hq (X, SZX 0 E). One of the motivations for understanding Dolbeault cohomology
groups of homogeneous bundles is that they play an essential role in the standard
proofs of vanishing theorems for general ample vector bundles [4,10,14,15].

Although the bundle Ç2P of holomorphic p-forms on X certainly does not have
dominant highest weights, we discovered the following unexpected phenomenon:
if X = G /P - Y = G/Q is a homogeneous fibration with fiber Z, and if E
has dominant highest weights, then the relative Dolbeault cohomology groups
HP,q(Z, Elz) still have dominant highest weights as Q-modules, see Proposi-
tion 2.6. This is reminiscent of the well-known fact that the action of Q on HP’P (Z)
is trivial. This observation allows reduction to quotients G/P with P maximal.

The most favorable case is that of compact Hermitian symmetric spaces, which
was investigated by one of us [17,18] with the help of some deep results of
Kostant [9]. We say that X is a symmetric space tower if there exist fibra-
tions X - YI -t ... - Ys - {0} whose fibers are compact Hermitian symmetric
spaces. If E is a homogeneous vector bundle on such a space X with dominant
highest weights, then HP,q(X, E) = 0 whenever q &#x3E; p. Note that this is sharp,
since HP,P(X) .=. 0 for all p, and allows us to obtain a refined version of the Nakano
vanishing theorem for ample line bundles.

Symmetric space towers include products of ordinary flag manifolds, but not, for
example, Grassmannians of isotropic subspaces of dimension greater than one in a
given symplectic vector space. Nevertheless, if G is a product of classical groups
and E has dominant highest weights, we prove that HP,q(X, E) = 0 whenever
q &#x3E; 2p. The main point is to understand the highest weights of ç2P which are not
given by Kostant’s results: we use simple geometric descriptions of the tangent
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bundle and standard results from classical representation theory to extend these
descriptions to p-forms.

In the final section we give results for the case of the exceptional groups and
classical groups of low rank where direct computation can be applied to yield to
the desired vanishing theorems.

1. Preliminaries

We recall some well-know facts and establish the notation used in later sections.

General references are [1, 7].
Let G denote a simply-connected semi-simple complex Lie group and fix a

maximal torus H C G. Let A be the lattice of weights with respect to H and
let 03A6 C A denote the set of roots of G. Let B D H be a Borel subgroup of
G and let the positive roots 03A6+ of G be chosen so that B is generated by the
root groups corresponding to the negative roots, 03A6 = -,D+. Let ai, ..., al,
f = rank G, be the simple roots of G and let À l, ... , AI be the basis of A dual to the
simple roots with respect to the Killing form: (Ài, aj) = 2 (Ai, aj ) / (aj , aj) = dij.
The set of dominant weights is denoted by A+ and consists of À e A such that
(À, ci) 0 for 1  i  f. A weight is singular if (À, a) = 0 for some root a E 03A6.

Let à = 2 aeb+ce = Ai 1 + + A£ denote the minimal non-singular dominant
weight.

Let W be the Weyl group of G, the finite group of reflections of the weight lattice
03A6A generated by simple reflections ai (J.-L) = M - (p, ai) ai, M e A, i = 1,..., f.
For every weight À e A there is a cr E W such that o, (A) e A+; o, (A) is called

the dominant conjugate of À and the index of À, ind (A), is the minimal number of
reflections needed to take À to or (A). It is given by ind (A) = #{{3 E 03A6+ (A, (3) 
0}. When À is non-singular, then or is unique and ind (À) = len (or), where len (or)
is the minimum number of simple reflections required to express cr as a product of
simple reflections.

Let P be a parabolic subgroup of G. We may assume that P contains B so that
P is generated by B and the root groups corresponding to the positive roots, 03A6+ p,
of P. Let Ip C {l, ... , el denote the set of indexes of the simple roots cxi, i E Ip,
that generate 03A6p. We say that a weight À ni AI + + nlÀl is P-dominant if
ni = (À, ai) 1&#x3E; 0 for all i e Ip. The set of all P-dominant weights is denoted by
A+P

Let E be a P-module, i.e., E is a finite-dimensional complex vector space
and P acts on E via a holomorphic representation P--+ GL(E). The weights
(resp. P-dominant weights) of E are denoted by AP (E) (resp. A+ (E». The
irreducible P-module of highest weight À e A+ is denoted by Vp; the set of
weights (respectively dominant weights) of YP is denoted by Ap(À) (resp. Ap (03BB)).
When P = G the subscript is sometimes dropped. The weights of P are naturally
imbedded in the weights of G, AP C A, and the group Wp of reflections of Ap
(generated by simple reflections ai for i E Ip) is naturally a subgroup of W.
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A P-module Eo determines a homogeneous vector bundle E on X = G/P:
E = G x Eo/P where the action of P on the product G x Eo is the usual diagonal
action. Conversely, any homogeneous vector bundle on X can be written in this
form. To avoid excess notation, we sometimes use the same letter to denote both
the P-module and the associated homogeneous vector bundle. We shall also use E
to denote the sheaf of germs of sections of E.

Every P-module E has a filtration by P-submodules, E = Eo D E1 :) ... :)
Et :) Et+1 = 0, such that the quotient modules Êi = Ei/Ei+1 are irreducible
P-modules of highest weight J.-li. We call these weights the highest weights of E
and denote the set of them by AP++(E) _ (&#x3E;i , ... , &#x3E;t ) . Although such filtrations
of E are not unique, the set of highest weights AP++(E) is uniquely determined
by the decomposition of E into irreducible components Êi with respect to the
reductive group H . Sp where Sp is a semisimple Levi factor (generated by the
roots l03A6+p U - lf j) of P.

Let Tx be the P-module defined by the isotropy representation of P on the
tangent space of X = G/P at the identity coset. Then the weights ofTx are called
the roots of X, 03A6+x = Ap(Tx) = $+ B 03A6+P. The vector bundle SpX = APTX
of holomorphic p-forms on X is naturally homogeneous and the weights of the
associated P-module are AP(S2X) _ (- £ ,e s fl S C 03A6x+ , #S = p}.
A fundamental tool for calculating the cohomology of a homogeneous vector

bundle is Bott’s Theorem [3]. We shall use the following version of this theorem,
see for example [5, 19].

LEMMA 1.1 Let E be a homogeneous vector bundle on X = G /P. If À is a highest
weight of the G-module Hq(X, E), À e A++(H9(X, E)), then À = a(J.-l + 8) - 8
where Jl e At++(E), u(&#x3E; + 8) is the non-singular dominant conjugate of Jl + 8,
a e W, and q = ind (&#x3E; + 8) = len (a). In particular, if I(E) is the set of indexes,
ind (&#x3E; + à), ofnon-singular weights &#x3E; + à where &#x3E; e AP++(E), then Hq (X, E) = 0,
ifq E I(E).

2. Dolbeault cohomology

We retain the notation and conventions from the previous section. Let G be a semi-
simple complex Lie group and P a parabolic subgroup of G defined by a set of
indexes 7p. In this section we prove some general propositions about the Dolbeault
cohomology of a homogeneous vector bundle E on X = G/P. We assume that the
highest weights of E are dominant. In particular, E is generated by global sections
and Hq(X, E) = 0 for q &#x3E; 0, see [20, Lemma 3.4]. The first goal is to find an integer
function ux, independent of E, for which HP,q(X, E) := Hq(X, Qj/ © E) = 0
whenever q &#x3E; uX(p). Since this notion appears frequently, we make the following
definition.
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DEFINITION 2.1 An integer function u x is called an upper bound for the homo-
geneous Dolbeault cohomology on X if, for any homogeneous bundle E on X
with dominant highest weights, HP,q (X, E) = 0 whenever q &#x3E; u x (p) .

The basic technique for finding such an upper bound is to apply Lemma 1.1 to
Qj/ © E by estimating the index of appropriate weights.

LEMMA 2.2 Let E and F be P-modules. Any weight w e At+(E 0 F) can be
expressedasasumw = &#x3E; + v e A j where &#x3E; e At+(E) and v e A p (À) for some
&#x3E;... E At+(F).

Proof. The weights A t+ (E 0 F) are determined by the decomposition of E 0 F
into irreducible components with respect to a semisimple Levi factor S p of P. As
an SP-module, E 0 F EÉ EBj.t,À Vp 0 VP where the sum is over &#x3E; e At++(E),
A e AP++(E). It follows from Steinberg’s formula that the highest weights w that
appear in the décomposition Vp 0 V2 £É E9w nj.t,À (w) Vp have the form w = &#x3E; + v

where v e Ap(&#x3E;...), see, e.g., [7, 24.4]. D

LEMMA 2.3 Let À e A+, &#x3E; e AP+ and v e AP(a). If &#x3E; + v e At, then ind (..t +
03A6+) fi ind (&#x3E;).

Proof It is enough to prove that if {3 e 03A6+ and (03BC + v, (3)  0 then (v, (3) &#x3E; 0,
because this implies

If {3 E 03A6pt then (&#x3E; + v,(3)  0 by assumption. So let (3 = Ei-lmi(R)ai E 03A6p1.
Write À = f==I(À,ai)Ài with (À, aj) j 0 for ait i, and v = j==t(v,aj)Àj =
À - £je Imj(v)aj where rnj(v) # 0 for i E Ip. Then (v, aj) = (À, aj) -
iElpmi(v)ci,j where cj, j = (ai, aj) are the entries in the Cartan matrix for G.

Assume for the moment that v E At(À) so that (v, ai)  0 for i e Ip. Let
m j ( j3) = m j ( fl) (a j , aj) /2 for ail j. Then

because cj j z 0 when i # j. Now, if 1I fi: AP+, then there is a a e Wp and
vo e A j (À) such that 1I = Qvo. Since cr03A6X+ = 03A6X+, we see as above that (V, (3) =
(vo , u 1 fl) j 0. 0
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DEFINITION 2.4 Let X = G/P. For each 0  p  dim X define

Little is known about the function mx for general X, although it is easy to
check that mX ( 1 ) = 1. In the next section we show that mX (p) &#x3E; p, and for
compact hermitian symmetric spaces mX (p) = p, for 0  p fi dimX. There
are other homogeneous spaces, however, for which mX (p) is strictly greater than
some p, although in ail the examples we computed, mX (p) remains ’close’ to p,
see Section 5. In any case, we now show that m x is always an upper bound for the
homogeneous Dolbeault cohomology on X.

PROPOSITION 2.5 Let X = G/P and let E be a homogeneous vector bundle
on X. Assume the highest weights of E are dominant, AP++(E) C A+. Then
HP,q(X,E) = 0 whenever q &#x3E; mX (p).

Proof. By Lemma 2.2, AP+(S2X E) consists of weights of the form Il +
v e At where Il e AP+(StX) and v e Ap(À) for some À e Ap+(E). By
Lemma 2.3, ind (&#x3E; + v + 8) ind (C + 8) mx(p). Therefore, by Lemma 1.1,
Hq(X, QP © E) = 0 if q &#x3E; mx(p). 0

The Borel-Le Potier spectral sequence can be used to ’lift’ vanishing theorems
for the Dolbeault cohomology of vector bundles on certain homogeneous spaces
to spaces that fiber over them. An important part of the process is understanding
the relative cohomology of the fiber. The next proposition addresses this point.

PROPOSITION 2.6 Let X = G/P - Y = G 1 Q be a homogeneous fibration
with fiber Z = Q/P where P C Q are parabolic subgroups of G. Let E be
a homogeneous vector bundle on X and assume that the highest weights of the
associated P-module are dominant, A t+ (E) c A+. Then the highest weights of
the Q-module HP,q(Z, E] z ) are also dominant, AQ+((Z, EZ)) c A+.

Proof. By Bott’s Theorem (Lemma 1.1 ), a weight e Ai+ (Hq ( Z, Q5 © E ] z ) )
has the form g = u (q + 8) - 8 where a e WQ and n] E A j+ (Q5 © E). We know
that (ç, ai) &#x3E; 0 for i e IQ, so we must show that (ç, aj) 2:: 0 for j tt IQ.
By Lemma 2.2, n] = Il + v for some J.l E At+(E) and v E Ap (Q5). By [9,
Lemma 5.9], AQ (à) = {8 - £pe sfl S c 03A6Q}. Since v = -f3ES{3 for some
subset S c ..pi c 03A6+Q, it follows that q + à = &#x3E; + à - £ ,e s fl is a weight of the Q-
representation VQ © VQ. Therefore, its Q-dominant conjugate, u (q + 8), must have
the form &#x3E; + 8 - 03A3,BEP+nf3{3 with n,a &#x3E; 0, by Lemma 2.2. Let {3 = EiElQmi (,3)aiQ
with mi &#x3E; 0. Then, if j (j. IQ, (1, aj ) = (U, aj ) - fJEcJ&#x3E;,iEIQnfJmi(3)(ai’ aj) &#x3E;
0, since (ai, aj ) # 0 when i # j. D

In the context of homogeneous fibrations, this result extends to Dolbeault
cohomology certain general positivity properties of direct images of dualizing
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sheaves: if f : X - Y is a surjective map between smooth projective varieties,
then fwxly is semi-positive as soon as a normal crossing hypothesis is ful-

filled, see [8, Corollary 3.7]. Moreover, if L is an ample line bundle on Y, then
Hi (Y, wy (g) Rj f*wx/y 0 L) = 0 whenever i &#x3E; 0, [8, Theorem 2.1 ].
We now give a general lifting property that is useful for the inductive proofs of

Sections 3 and 4, as well as for calculations with the tables of Section 5.

PROPOSITION 2.7 Let 03A0r : X = GIP --+ Y = G 1 Q be a homogeneous fibration
with fiber Z. Let uy and uz be upper bounds for the homogeneous
Dolbeault cohomology on Y and Z, respectively. Then the function ux(p) =
maxt{uy(t) + uz(p - t)} is an upper bound for the homogeneous Dolbeault
cohomology on X.

Proof. Let E be a homogeneous bundle on X with dominant highest weights.
The Borel-Le Potier spectral sequence ([2, 10, 11]) associated to E and x is
defined by the filtration of QP ~ E, Ft,p = QP-t A 7r*Çit 0 E, with quo-
tients Gt,p = Ft,p / Ft+l,p = ni-t 0 x*Q§ 0 E. The terms of order one are
PE t,q-t _ 1 Hq (X, Gt,P) and the sequence converges to Hp,q (X, E). Now, P Et 1 q-t
is itself the abutment of the Leray spectral sequence associated to Rj 1f *Gt,p =
Hp-t,j (Z, E 1 Z) 0 Ç2 t y whose terms of order two are E2z Il = Ht,i(y, Hp-t,j (Z, E ] z ) )
By assumption, Hp-t,j (Z, Elz) = 0 whenever j &#x3E; uz(p - t). Also, by Propo-
sition 2.6, the highest weights of HP-t,j (Z, El z) as a Q-module are dominant.
Therefore, E2"j = 0 for i &#x3E; uY (t) . If q = i + j &#x3E; maxt f uy (t) + uz(p - t)} then
for each either j &#x3E; uz (p - t) or i &#x3E; uY (t) and so EBi+j==q E2"3 = 0. This implies
that p Ef,q-t = 0 and hence that Hp,q (X, E) = 0 whenever q &#x3E; ux (p). ~

3. Symmetric space towers

We now tum our attention to compact hermitian symmetric spaces and spaces built
from them which we call symmetric space towers. A compact hermitian symmetric
space X is a direct product, X = XI x ... x Xt, of irreducible hermitian symmetric
spaces Xi that are quotients of simple complex Lie groups by maximal parabolic
subgroups. The possibilities for the type of simple group and for the complement
I’p = {m} are as follows (the simple roots are numbered as in [22]): type AI,
m = 1,... , I! (Grassmann); type Bi, m = 1 (quadric); type CI, m = Ê; type Dt,
m = 1 (quadric), l - 1, or l; type E6, E7, m = 1.

For a general homogeneous space, X = G/P, where G is semisimple and P is
parabolic, it is well-known that Hp,q (X) Hq (X, Qj/ ) # 0 if and only if p = q.
One way to see this is to use Bott’s Theorem (Lemma 1.1) and the following fact
proved in [9]
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is non-singular if and only if

It follows directly from this statement that mx (p) &#x3E; p. In general, there are
weights p e A++ (Qp ) such that p + 8 is singular. While such weights do not
contribute to the Dolbeault cohomology groups HP,q(X) they can play a role in
the Dolbeault cohomology of a homogeneous vector bundle E on X. For compact
hermitian symmetric spaces, the situation is much simpler since the vector bundle
of holomorphic p-forms decomposes into a direct sum of irreducible P-modules,
see [9]:

In other words, for these spaces A++ (Ç2P = {a (8) - 8 1 a E W t (p)} so that
mx (p) = p. As a corollary of Proposition 2.5, we then obtain the following
vanishing theorem which generalizes results for line bundles in [17, 18] and for
Grassmann manifolds in [14]

COROLLARY 3.1 Let X be a compact hermitian symmetric space and let E be a
homogeneous vector bundle on X. Assume the highest weights of E are dominant.
Then HP,q(X, E) = 0 wheneverq &#x3E; p.

This statement can be extended to a wider class of homogeneous spaces by
applying Proposition 2.7 to fibrations X -&#x3E; Y, where Y is a compact hermitian

symmetric space, and using induction on the fiber Z. For this purpose we make the
following definition.

DEFINITION 3.2 The homogeneous space X = G/P is said to be a symmetric
space tower if there exists a sequence of parabolic subgroups, P = Qo C QI C
... c Q s c QS+1 = G such that Zi = Qi 1 Q i-l is a compact hermitian symmetric
space for i = 1,..., s + 1. Thus, X is a tower of homogeneous bundles,

where Yi - GlQi and the fibers Zi are compact hermitian symmetric spaces for
all i .

Note that if G is a product of simple groups of type A£ and P is any parabolic
subgroup then X = G/P is a symmetric space tower. Also, a symmetric space
tower fibers over a compact hermitian symmetric space with a fiber that is again
a symmetric space tower. This permits the induction argument in the proof of the
next theorem.
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THEOREM 3.3 Let X be a symmetric space tower and let E be a homoge-
neous vector bundle on X. Assume the highest weights of E are dominant. Then
Hp,q (X, E) = 0 whenever q &#x3E; p.

Proof. If X is already a compact hermitian symmetric space we may apply
Corollary 3.1. Otherwise, let 7r : X = GIP ---&#x3E; Y = G/Q be a non-trivial fibration
of X where Y is a compact hermitian symmetric space and the fiber Z = Q/P is
again a symmetric space tower. By Corollary 3.1, an upper bound for the Dolbeault
cohomology of Y is given by uY (p) = p. By induction on dimension, we may
assume that an upper bound for the homogeneous Dolbeault cohomology on Z is
also given by uZ (p) = p. Therefore, by Proposition 2.7, an upper bound for the
Dolbeault cohomology on X is ux(p) = maxt{uy(t) + uz(p - t)} = p. 0

4. Isotropic flag manifolds

We noticed in the last Section that when G is a product of simple groups of type
Al, and P any parabolic subgroup, then X = G/P is a symmetric space tower.
We now study the case where G is a simply-connected simple group of type BI,
CI or DI, P is a maximal parabolic subgroup, and we exclude the cases for which
X = G/P is a compact hermitian symmetric space. Let m be the index in the
complement, Ip = Iml. Geometrically, X is the space of isotropic m-planes of
a complex vector space V, endowed with a non-degenerate bilinear form. This
form is symmetric when G is of type Be or DÉ (the dimension of V is then 2l + 1
and 2l respectively), and skew-symmetric when G is of type CI (V is then 2l-
dimensional). We denote by cSl, ... , cSl an orthonormal basis of the characters of
the torus H of G, and we follow the conventions of [22] for roots and weights.

PROPOSITION 4.1 Suppose that X = G/P is not symmetric. If G is of type Bl
or D£, then At+(Ok) = {-cSm-1 - Em, -Em + Em+t}, and if G is of type Cl,
then A++ (Ç21 ) = {-2Em, -,-m + Em+1}.

Proof. The linear action of P on the tangent bundle is given by the adjoint
representation of P on the quotient of Lie algebras 9 IP. Hence, the action of P on
the cotangent bundle is given by the adjoint representation of P on the orthogonal
complement of P in 9 with respect to the Killing form. If P is the stabilizer of the
m-plane W of V, a straightforward computation then establishes the isomorphism
of P-modules Q§ç ci {g E g, g(V) C W1, g(W1-) C W, g(W) = 01. This
surjects onto Hom (W1/W, W), with kemel {g E g, g(V) C W, g(W-L) = 0}
consisting of elements of Hom (V IW 1-, W) - W ~ W coming from g. When
G is an orthogonal group, such a two-tensor comes from g if and only if its is
skew-symmetric, hence an exact sequence
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When G is symplectic, tensors coming from 9 are symmetric and we get the
sequence

Hence the highest weights of the cotangent bundle. 0

Recall that if ,S’p is a semi-simple Levi factor of P, irreducible P-modules and
irreducible Sp-modules are the same, because the action of the unipotent radical of
P is necessarily trivial. This Levi factor is a product Sp = M x N with M of type
Am- and N of type Bn (resp. Cn, Dn), with m + n = l, if G is of type Bl (resp.
Cl, Dp). Moreover, a weight J1. is P dominant if and only if VS P = VM 0 Vo with
a = ’EjmJ-Ljtj and 03B2 = Ej&#x3E;mpj,-j dominants. In particular, 03B2 is a non-increasing
sequence of non-negative integers, that is, a partition, and we will denote by 101
the sum of its parts.

Rather than trying to bound m  (p), it will be easier to give a direct proof of
our next vanishing theorem.

THEOREM 4.2 Let G be a classical simply-connected semi-simple group, and let
P be a parabolic subgroup. Let E be a homogeneous vector bundle on X = G 1 P,
and assume that the highest weights of E are dominant. Then Hp,q (X, E) = 0
whenever q &#x3E; 2p.

Proof. Because of Lemma 1.1 and Propositions 2.6 and 2.7, we may suppose
that G is simple of type BI, Cl or DI, that P is a maximal parabolic subgroup,
and that E is an irreducible P-module. Moreover, it is enough to show that if
À E A++ (Ç2P ), y E A + , and p is a highest weight of V t Q9 V: ’ then ind (p+6)  2p.

Let us treat the case where G is of type Bl. Proposition 4.1 implies that
A++ (SZX ) is the set of highest weights of the p-th wedge power of /B2VMEBVM0VN.
In particular, VS - (VM)* ~ vt, for some weights a and 03B2, having non-N ,

negative components whose sum is lai + 101  2p. We may then write VSP -
(VM-8a)* 0 vt+8/3 for some weights ba and ôfl, and ba has non-negative com-
ponents.
We divide the set of positive roots 1&#x3E;+ into the subset Q++ of roots e,, 1 - s 1,

and -, + Et, 1  s  t  l, and the subset Q-+ of roots Es - Et, 1  s  t  l.
Hence a corresponding decomposition for the index, into the sum ind ( p + 6) =
ind + (p + 6) + ind - (p + 6) with
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LEMMA 4.3 Suppose that p -f- b is regular. Then

Only the negative components of this weight, which are among the m first ones
(recall that 03B2 + 03B403B2 has non-negative components), may contribute to ind + ( p + 8).
Therefore, it is the sum of the integers h defined as follows: if n - 1/2 - aj +
Jai + j &#x3E; 0, then lj = 0; otherwise, lj is the number of indexes i for which

(p + 6, Ei + -m+ 1 -j)  0, with i  m + 1 - j or i &#x3E; m. But the regularity hypothesis
implies that the corresponding components of p + 8 have distinct absolute values.
Hence the bound

which implies our first claim. For the second one, note that we divided p + 6 into
two decreasing sequences. If hj,k = aj +,3k - j - k + 1 for 1  j  m and
1  k  n, then

Since ti E A +, Vs p - VI 0 VN with am = M,, &#x3E; Tl = 03BCm+1, so that j &#x3E; am
for every j. Moreover, 8(3, being a weight of VN, is in the convex hull of the
conjugates of T by the Weyl group on N. This implies that 1 Jok 1  Tl for every k,
hence 8aj - Jok &#x3E; 0 and

Recall that the conjugate partition a* of a is the partition whose jth component
is the number of components of a greater or equal to j : its Ferrer diagram is
obtained from that of a by reflection through the main diagonal. When 03B2 = a*, the
integers hj,k are the usual hook lengths of the partition a. In general, they can be
interpreted as mixed hook lengths, since hj,k is the sum of the horizontal distance
to the frontier of the Ferrer diagram of 03B2, and of the vertical distance to that of a*.
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1. Mixed hook lengths.

The mixed hook lengths are obviously negative outside the union of these two
Ferrer diagrams. Since we only take into account the m first columns and the n
first rows, we get

The lemma is proved. D

For every weight p E A++ (QP 0 E) such that p + ô is regular, we get

This proves the theorem for G of type Bl. The other cases are quite similar. 0

For an ample line bundle L on a smooth projective variety X, the Nakano
vanishing theorem states that Hp,q (X, L) = 0 whenever q &#x3E; dim X - p. If
X = G/P, then any line bundle on X is homogeneous and it is ample if an only
if the corresponding weight is dominant. Combining this with Theorems 3.3 and
4.2, we obtain the following.

COROLLARY 4.4 Let L be an ample line bundle on X = G 1 P. If X is a symmetric
space tower, then HP,q(X, L) = 0 whenever q &#x3E; 1 dim X. If G is a classical
semisimple complex Lie group, then HP,q(X, L) = 0 whenever q &#x3E; 2 dim X.

5. Spécial cases

In this final section we collect some results related to the Dolbeault cohomolo-

gy of a homogeneous bundle E on a space X = G/P where G has low rank
or is an exceptional group, i.e., G is of type E6, E7, E8, F4, or G2. Again, we
adopt the conventions of [22] for indexing roots. Our approach for this case is
to directly compute the function mX when P is a maximal parabolic subgroup.
This establishes a vanishing theorem for HP,q(X, E) by Proposition 2.5. Similar
vanishing theorems for a more general parabolic subgroup P can be deduced from
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Table 1. Exceptional Groups

Table 2. Type Bi

these by considering fibrations X = G /P - Y = G/Q, where Q is a maximal
parabolic subgroup, and applying Proposition 2.7.

The steps involved in calculating mX are as follows. First, we collect all P-
dominant weights of QP by calculating li = -Eoeso for all subsets S C Q&#x3E; x,
with p = #S, saving only those that are P-dominant. This list L of weights with
multiplicities is then sorted according to the inner product with 6. Starting with
the first weight M e L, i.e., (p, 6) largest, the subdominant weights of A+ (il) are
computed along with their multiplicities using Freudenthal’s formula. Then, for
each v e A+ (p) the multiplicity of v in L is reduced by the multiplicity of v
in V(,4). The same procedure is repeated with the next weight in L with positive
multiplicity, and so on, until the end of L is reached. The weights remaining
in L with positive multiplicity at that point are the highest weights, A++ (QP
Finally, the index of M + ô is calculated for each tt e A++ (Ç2P ) and the maximum
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for each p is mX (p). The length of this entire calculation is roughly exponential
in dim X.

Table 3. Type Ci

Table 4. Type DI

The results for the exceptional groups E6, F4 and G2 are given in Table 1. The
largest example we computed was G of type E7 and P the sixth maximal parabolic
subgroup so that dim X = 33. The calculation of mX took about 20 hours on a
SPARCstation-5. The values of mX in this case are as follows: mx (p) = p for
1  p z 18 and for p = 32,33; mx(p) = p + 1 for p = 19, 20, 22, 30, 31;
mX (p) = p + 2 for p = 21, 24, 26, 28, 29; and mX (p) = p + 3 for p = 23, 25, 27.
Most of the exact values of mx for the other maximal parabolic subgroups of E7
and of E8 are out of reach with this method, since dim X ranges from 42 up to 106.
We did find, however, that for any maximal parabolic subgroup of Et, mX (p) = p
for 1  p  4.
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Tables 2-4 give the values of mX for maximal parabolic subgroups of classical
Lie groups of low rank. Some of these are needed to apply Proposition 2.7 to the
general case for exceptional groups, but they are also useful to obtain vanishing
theorems sharper than Theorem 4.2 in the case of the orthogonal and symplectic
groups of low rank. The tables do not include type Ae or hermitian symmetric
spaces, since Theorem 3.3 gives the best possible result for those cases.

The number m in the first column identifies the maximal parabolic subgroup,
i.e., P = PIB{m}. The values of mx (p) are listed sequentially until they reach
dim X. The value of p can be read across the top row.
We close with a general vanishing theorem that can be deduced from the results

of this and the previous sections.

THEOREM 5.1 Let G be a simply-connected semi-simple group with no factor of
type E7 or Eg, and let P be a parabolic subgroup. Let E be a homogeneous vector
bundle on X = G/P, and assume that the highest weights of E are dominant.
Then Hp,q (X, E) = 0 whenever q &#x3E; 2p.

It is not clear whether the upper bound of 2p for the homogeneous Dolbeault
cohomology on X is the best general bound possible. The fact that mx (p) can be
greater than p does not in itself rule out the possibility that an upper bound may
indeed be p.
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