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1. Introduction

Let R be a Noetherian local ring with infinite residue field k, and let I be an
R-ideal. The Rees algebra R = R[It] , 0 Ii and the associated graded ring
G = gri(R) = n @R RII -’- Q)i&#x3E;o I’II’+’ are two graded algebras that reflect
various algebraic and geometric properties of the ideal I. For instance, Proj(R) is
the blow-up of Spec(R) along V(I), and Proj(G) corresponds to the exceptional
fibre of the blow-up. One is particularly interested in when the ’blow-up algebras’
R and G are Cohen-Macaulay or Gorenstein: Besides being important in its own
right, either property greatly facilitates computing various numerical invariants of
these algebras, such as the Castelnuovo-Mumford regularity, or the number and
degrees of their defining equations (see, for instance, [29], [5], or Section 4 of this
paper).

The relationship between the Cohen-Macaulayness of R and G is fairly well
understood: For some time, it was known that G is Cohen-Macaulay if R has this
property (at least in case R is Cohen-Macaulay and I £ VA, [24]), but recently,
various criteria have been found for the converse to hold as well (e.g., [29], [33],
[5], [30]). This shifts the focus of attention, at least in principle, to studying the
Cohen-Macaulayness of G, and similar remarks apply for the Gorenstein property
(which is less interesting for R than for G).

When investigating R or G, one first tries to simplify I by passing to a reduction:
Recall that an ideal J C I is called a reduction of I if the extension of Rees

algebras R(J) C R(I) is module finite, or equivalently, if Ir+1 1 = JI r for some
r &#x3E; 0 ([31]). The least such r is denoted by rJ(I). A reduction is minimal if it is
minimal with respect to inclusion, and the reduction number r( 1) of I is defined as
min{ r J( 1) 1 J a minimal reduction of l}. Finally, the analytic spreadl(I) of I is the
Krull dimension of the fiber ring R @R k  G @R k, or equivalently, the minimal
number of generators y (J) of any minimal reduction J of 1 ([31]). Philosophically
speaking, J is a ’simplification’ of I, with the reduction number r(I ) measuring
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how closely the two ideals are related. While the passage of algebraic properties
from R(J) to R(I) is by no means a simple matter, one might hope for some
success if r(I ) is ’small’. This line of investigation was initiated by S. Huckaba
and C. Huneke, who were able to treat the case where l(I )  grade 7+2 and
r(I)  1 ([20], [21]).
Now let I be an ideal with grade g, minimal number of generators n, analytic

spread R, and reduction number r. Under various additional assumptions G was
shown to be Cohen-Macaulay when Ê  g + 2 and r  1 in [20], [21], when r  1
in [41], [38], when l  g + 2 and r  2 in [11], [12], [4], [3], when n  l + 1 and
r  î - g + 1 in [33], when r  1 - g + 1 (and sufficiently many powers of I have
high depth) in [35], when l  g + 2 and r  3 in [2].
We are going to present a comparatively short and self-contained proof of a more

general result that contains essentially all the above cases. Our main technique is
to exploit the Artin-Nagata properties of the ideal. To explain this, we first recall
the notion of residual intersection, which generalizes the concept of linkage to the
case where the two ’linked’ ideals may not have the same height.

DEFINITION 1.1. ([6], [28]). Let R be a local Cohen-Macaulay ring, let I be an
R-ideal of grade g, let K be a proper R-ideal, and let s j g be an integer.

(a) E is called an s-residual intersection of I if there exists an R-ideal a C I,
such that K = a: I and ht l’ &#x3E;, s  t(a).

(b) Il is called a geometric s-residual intersection of I, if K is an s-residual
intersection of I and if in addition ht I + Il &#x3E; s.

We now define what we mean by Artin-Nagata properties.

DEFINITION 1.2. ([38]). Let R be a local Cohen-Macaulay ring, let I be an

R-ideal of grade g, and let s be an integer.

(a) We say that I satisfies ANS if for every g  i  s and every i-residual
intersection K of I, RIE is Cohen-Macaulay.

(b) We say that I satisfies ANS if for every g  i  s and every geometric
i-residual intersection K of I, R/K is Cohen-Macaulay.

It is known that any perfect ideal of grade 2, any perfect Gorenstein ideal of
grade 3, or more generally, any ideal in the linkage class of a complete intersection
satisfies ANS for every s (at least if R is Gorenstein, [28]). (See Section 2 for more
examples of ideals satisfying ANs.)

In the context of the questions we are interested in, one usually assumes the
local condition GS of [6]: The ideal I satisfies Gs if M(Ip)  dim Rp for every
p E V(I) with dim Rp z s - 1, and I satisfies G 00 if GS holds for every s. We are
now ready to state our main results:

THEOREM 3.1. Let R be a local Cohen-Macaulay ring of dimension d with infinite
residue field, let I be an R-ideal with grade g, analytic spread l, and reduction
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number r, let k &#x3E; 1 be an integer with r  k, assume that I satisfies Gl and
ANR--3 locally in codimension 1 - 1, that I satisfies ANi- ..2,kl, and that depth
.R/Ij&#x3E;d-.-k-j.forljk.

Then G is Cohen-Macaulay, and if g &#x3E; 2, R is Cohen-Macaulay.

As a first corollary, one obtains that G is Cohen-Macaulay, if R is Cohen-Macaulay
and I is a strongly Cohen-Macaulay R-ideal satisfying GR and having r , 1 - g + 1.
(See Section 3 for further applications and a discussion of the assumptions in
Theorem 3.1.)
We also consider the question of when G is Gorenstein. Generalizing earlier

work from [18], [11], [13], [33], [35], [16] (see Section 5 for precise references),
we present two conditions for the Gorensteinness of G, a sufficient one, very much
in the spirit of Theorem 3.1, and a necessary one. Combining both results one
concludes that the Gorenstein property of G corresponds to the reduction number
of I being ’very small’:

COROLLARY 5.3. Let R be a local Gorenstein ring of dimension d with infinite
residue field, let I be an R-ideal with grade g, analytic spread l, and reduction
number r, let k &#x3E; 1 be an integer, assume that I has no embedded associated
primes, that I satisfies GR and ANR--3 locally in codimension 1 - 1, that I satisfies
ANR-=-max{2,k}’ and that depth R/Ij &#x3E; d - l + k - j + 1 for 1  j  k. Any two
of the following conditions imply the third one:

(a) r , k.
(b) depth RIII &#x3E;, d - g - j + 1 for 1  j  1 - g - k.
(c) G is Gorenstein.

We mention one simple obstruction for G to be Gorenstein, generalizing a
result from [33]: Assume I is generically a complete intersection and the Koszul
homology modules Hi of I are Cohen-Macaulay for 0 i  , then the
Gorensteinness of G implies that I satisfies Goo and is strongly Cohen-Macaulay.
(See Section 5 for further applications along these lines.)

2. Residual Intersections

In this section we review some basic facts about residual intersections. We also

prove two technical results (Lemmas 2.5 and 2.8) that will play a crucial role later
in the paper.

Let I = ( a 1, ... , an ) be an ideal in a local Cohen-Macaulay ring R of dimension
d. Recall that al, ... , an is a d-sequence if [( al, ... , ai) : (ai+ 1)] nI = (a 1, ... , ai)
for 0  i  n - 1. A d-sequence is called unconditioned in case every permutation
of the elements forms a d-sequence. The ideal I is strongly Cohen-Macaulay if
all Koszul homology modules Hi = Hi (a1, ... , an ) of I are Cohen-Macaulay,
and more generally, I satisfies sliding depth if depth Hi &#x3E; d - n + i for every
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i. (These conditions are independent of the generating set.) Standard examples of
strongly Cohen-Macaulay ideals include perfect ideals of grade 2 ([7]), perfect
Gorenstein ideals of grade 3, or more generally, ideals in the linkage class of a
complete intersection ([25]).
We begin by mentioning two results that guarantee Artin-Nagata properties and

describe the canonical module WRIK of a residual intersection K.

THEOREM 2.1. ([19], cf. also [26]). Let R be a local Cohen-Macaulay ring, and
let I be an R-ideal satisfying Gs and sliding depth.

Then I satisfies AN,.

THEOREM 2.2. ([38]). Let R be a local Gorenstein ring of dimension d, let I be an
R-ideal of grade g, assume that I satisfies G, and that depth RI Ij  d - g - j + 1
whenever 1  j  s - g + 1. Then:

(a) I satisfies ANs.
(b) For every g  i  s and every i-residual intersection K = a : I Of I, WRIK

Ii-g+l 1 aIi-g, where f.J.)R/ K  Ii-g+l + K/K in case K is a geometric i-
residual intersection.

The above assumption that depth RI Ij  d - g - j + 1 for 1  j  s - g + 1,
is automatically satisfied if I is a strongly Cohen-Macaulay ideal satisfying G s, as
can be easily seen from the Approximation Complex ([17, the proof of 5.1]).

The next two lemmas are refinements of results from [26] and [19].

LEMMA 2.3. ([38]). Let R be a local Cohen-Macaulay ring with infinite residue
field, let a C I be (not necessarily distinct) R-ideals with m(a)  s  ht a : I, and
assume that I satisfies G s.

(a) There exists a generating sequence a 1, ... , as of a such that for every 0  i ,
s - 1 and every subset {VI, ... , vil Of 1, si, ht( aVl , ... , aVi) : I &#x3E; i and

ht I + ( av , ... , av, ) : I j i + 1.
(b) Assume that I satisfies ANS-2. Then any sequence a l , ... , as as in (a) forms

an unconditioned d-sequence.
(c) Assume that I satisfies ANt for some t  s - 1 and that a 0 l, write

ai = (al , ... , ai), Ki = ai : I, and let denote images in RI Ki. Then for
0 z 1 fi t + 1 :
(i) Ki i = ai : ( ai+ 1 ) and ai = I fl Ki, if i  s - 1.
(ii) depth R/ ai = d - i.
(iii) Ki is unmixed of height i.
(iv) ai+l 1 is regular on Rand ht I = l, if g - 1  i  s - 1.

LEMMA 2.4. Let R be a local Cohen-Macaulay ring and let I be an R-ideal
satisfying ANt .
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(a) ([38, 1.10]) Assume that I satisfies Gt+ 1, and let p E V (I); then Ip satisfies
ANt .

(b) Assume that I n (0 : 1) = 0, and let 
,-, denote images in R/0 : I; then i

satisfies ANt .

Proof. To prove part (b), let ht I  i  t and let ( â 1, ... , ai) : I be a geo-
metric i-residual intersection of I, where we may assume that ai E 1. Now write
a = (a1, ..., ai) and K = a : I. Then 0 : I C I( C (a + 0 : I) I =
[a + I n (0 : I)] : I = a : I = K, which shows that RIK  R/à : Î and
RI l + K n-- RI l + a : I. Thus K is a geometric i-residual intersection of I, and
therefore Ria: I ^--’ RIIIC is Cohen-Macaulay. D

Our next lemma generalizes a result from [38].

LEMMA 2.5. Let R be a local Cohen-Macaulay ring of dimension d with infinite
residue field, let a c I be R-ideals with li(a)  s  ht a : I, let k and t be integers,
assume that I satisfies Gs and AN;-3 locally in codimension s - 1, that I satisfies
ANt-, and that depth RI lj  d - s + k - j whenever 1  j  k. Let ai and Ki
be the ideals as defined in Lemma 2.3. Then

(a) depth RlaiIi &#x3E; min(d - i, d - s + k - j} whenever 0  i  s

and max(0, 1 - t - 1} j  k.
(b) [ai : (ai+l)] nIi = aih-1 whenever 0  i  s - 1 and max( 1 , i - t} j  k.
(c) I(i n Ii - ailj-l 1 whenever 0  i  s and maxt 1, i - tl , j k + 1,

provided that ht I + a : I &#x3E; s + 1 and I satisfies AN;-2 locally in codimen-
sion s.

Proof. We first show that if (a) holds for i, then so do (b) and (c). How-
ever, it suffices to check the equalities in (b) and (c) locally at every prime
p E Ass(Rlailj-I), where for (c) we may even assume that p E V(I). Now by (a),
dim Rp z max{ i, s - k + j -I}. Thus in the situation of (b), dim Rp  s -1, hence
Ip == ap =f Rp and this ideal satisfies AN;-2 by Lemma 2.3 ((c)(üi)). On the other
hand, with the assumption of (c), dim Rp z s, and again Ip = ap # Rp satisfies
S-2’Now in either case, Lemma 2.3 (b) implies that the generators a 1, ... , as of
Ip form a d-sequence in Rp, and the assertions follow from [23, Theorem 2.1].

Thus it suffices to prove (a), which we are going to do by induction on i, 0 fi
i  s. The assertion being trivial for i = 0, we may assume that 0 , i  s - 1,
and that (a) and hence (b) hold for i. We need to verify (a) for i + 1. But for j = 0
(which can only occur if i + 1  t + 1), our assertion follows from Lemma 2.3
«c)(ii». Thus we may suppose that j &#x3E; 1. But then by part (b) for i,
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Hence, writing ai+1 1 = ai + (ai+1 ), we obtain an exact sequence

On the other hand, by part (b) for i = 0, [0 : (ai+1 )] n ailj-l C [0 : (ai+1 )] n h =
0, and therefore ai+laiIi-1 -= aiIi-1, ai+lij I j . If i = 0, the latter isomor-
phism implies the required depth estimate for .R / ai+ 1 h , whereas if i &#x3E; 1, we use
(2.6) together with part (a) for i. D

We will apply Lemma 2.5 by way of the following remark:

REMARK 2.7. ([38, 1.11]). Let R be a local Cohen-Macaulay ring with infi-
nite residue field, let I be an R-ideal with analytic spread 1 satisfying Gl and
ANf--3 locally in codimension 1 - 1, and let J be a minimal reduction of I. Then
ht J : I &#x3E; 1.

A special case of our next result can be found in [35].

LEMMA 2.8. Let R be a local Cohen-Macaulay ring of dimension d with infinite
residue field, let I be an R-ideal with grade g, analytic spread l, and reduction
number r, let k and t be integers with r  k and t &#x3E; 1 - k - 1, assume that I

satisfies Gl and ANf--3 locally in codimension 1 - 1, that I satisfies ANt-, and
that depth RI Ij  d - 1 + k - j for 1  j  k. Let J be a minimal reduction of I
with ri (I) = r, write G = grI(R), for a e I let a’ denote the image of a in [G]l,
and for a = J, let a1, ..., al and ai be as defined in Lemma 2.3 (a). Then:

(a) ai n Ii = aiji- wheneverO  i z É - 1 and j &#x3E; maxf 1, i - t}, or i = l and
j &#x3E; r + 1.

(b) a’,..., 1 a’ _q form a G-regular sequence, and [(a,.. 1 aZ) :G (a+I)]j ==
(a,,..., a)]- whenever g  i  l - 2 and j &#x3E;, max( 1 , i - t}, or i = É - 1
andi &#x3E;, maxtl,£ - t - 1, r - Il.

Proof. (a): If i = l, our claim is clear since j &#x3E;, r + 1 and therefore h =
Jh-1 = aflj-l. Furthermore, if 0  i  î - 1 and 1  j , k, then the assertion
follows from Lemma 2.5 (b) with s = l. Thus we may assume that j ) k + 1.
In this case, we are going to prove by decreasing induction on i, 0  i  l,
that ai n h = ailj -1. This equality being clear for i = l, we may suppose that
0 , i  î - 1.

Since i - t  k, and since ai n Il = ailv-l is already known for max{I,i-t} 
v  k and for v = 1, we have that the desired equality holds for v = max{ 1, i - t} .
Thus we may assume i - t + and that by increasing induction
on j,

Furthermore, by decreasing induction on i,
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Finally, Lemma 2.3 ((c)(i)) (if k = 0) and Lemma 2.5 (b) 1) imply that
az, which upon intersection with Ii-1 yields

Now we obtain

(b): We first show that form a regular sequence. If 1 = g, 1

and RI lis Cohen-Macaulay, hence the assertion follows from [41, 2.4]. Thus we
may assume that g  1 - 1. We may further suppose that t &#x3E; g - 1. But then part
(a) and [40, 2.6] imply that a[ , ... , a) form a G-regular sequence.

Now let u e [(ai a) : (a, 1)]j. Picking an element x e Ii with x + Ij+ 1 =
u,wehaveai+lx E ai +Ij+2, and therefore by part (a), ai+, x e ai+in(ai +Ij+2) =
ai + ai+, njj+2 = ai + ai+lij+l = ai + ai+lIj+’. Thus ai+l (X - y) E ai for
some y E Ij+’. Since x - y + Ij,4-1 = x + Ij+l - u, we may replace x by
x - y to assume that ai+lx E ai. But then by Lemma 2.5 (b) and by part (a),
x E [ai: (ai+1 )] n .P == ai n ij= ailj-l, which implies u E (a’, ... , ai). D

3. Conditions for the Cohen-Macaulayness of the Associated Graded
Ring

Throughout, R will be a local Cohen-Macaulay ring, I will be a proper R-ideal, G
and n will denote the associated graded ring and the Rees algebra of I.

So far, the Cohen-Macaulayness of G has been shown under suitable assump-
tions in [20, 2.9], [21, 4.1], [41, 4.5 and 4.13], [38, 4.1 and 4.9], [11, 1.5], [12, 1.4],
[4, 8.2], [3, 3.1], [33, 4.10], [35, 5.5 and 5.8], and [2, 2.10]. The goal of the present
section is to give a self-contained proof of a general theorem, which essentially
contains these results as special cases (Theorem 3.1 ). After this paper was written,
it came to our attention that other generalizations have been recently proved by
Goto, Nakamura, Nishida ([14]), and by Aberbach ([1]).

THEOREM 3.1. Let R be a local Cohen-Macaulay ring of dimension d with infinite
residue field, let I be an R-ideal with analytic spread 1 and reduction number r,
let k &#x3E;, 1 be an integer with r  k, assume that I satisfies Gland ANl--3 locally in
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codimensionl - 1, that I satisfies ANi- .,,,.t2,kl, and that depth RIII &#x3E; d-£+k- j
for 1  j , k. 

Then G is Cohen-Macaulay.

We are first going to discuss the assumptions of Theorem 3.1. Notice that the
Artin-Nagata condition and the depth assumption on the powers both involve the
parameter k : Increasing k has the effect of weakening the former condition and of
strengthening the latter, or vice versa. On the other hand, both assumptions are not
completely independent, as we will see below.

The condition depth RIII &#x3E; d - l + k - j for 1  j  k, gives a linearly
decreasing bound on the depths of the powers of I so that depth R /I*’ j d - l,
where the latter inequality is necessary for G to be Cohen-Macaulay (e.g. [9, 3.3]).
Also notice that if î = d, then it suffices to require depth RIII &#x3E; d - 1 + k - j
in the range 1 fi j fi k - 1. Moreover, for any strongly Cohen-Macaulay ideal I
satisfying Gl, one has depth RIII &#x3E; d - g - j + 1 for 1  j  1 - g + 1. Finally,
the depth assumptions in Theorem 3.1 imply that k  £ - g + 1, which can be seen
by setting j = 1.

As to the Artin-Nagata properties, notice that these assumptions automatically
hold if f = g + 2 and k = 3, or if I is ANF 2 (Lemma 2.4 (a)). On the other
hand, ANR--2 is always satisfied if l  g + 1, or if I satisfies Gl and sliding depth
(Theorem 2.1 ), or if R is Gorenstein, I satisfies Gl, and depth RIII &#x3E; d - g - j + 1
for 1 , j  î - g - 1 (Theorem 2.2 (a)). In particular, any reference to the Artin-
Nagata property can be omitted in Theorem 3.1 if É fi g + 1, or if R is Gorenstein
and k = î - g + 1.

This discussion shows that the results mentioned at the beginning of the section
are indeed special cases of Theorem 3.1; it also gives the following application:

COROLLARY 3.2. Let R be a local Cohen-Macaulay ring with infinite residue
field, let I be a strongly Cohen-Macaulay R-ideal with grade g, analytic spread Ê,
and reduction number r, assume that I satisfies Gl and that r , î - g + 1.

Then G is Cohen-Macaulay.

We want to list several other consequences of Theorem 3.1, before tuming to
its proof.

COROLLARY 3.3. Let R be a local Gorenstein ring of dimension d with infinite
residue field, let I be an R-ideal with grade g, analytic spread î, and reduction
number r, let k &#x3E; 1 be an integer with r  k, assume that I satisfies GR and
sliding depth locally in codimension î - 1 and that depth R/h &#x3E; d - g - j + 1
for 1  j  max { k , £ - 9 + 1 - k}.

Then G is Cohen-Macaulay.
Proof. The assertion follows from Theorem 3.1, in conjunction with Theorems

2.1 and 2.2 (a). D
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COROLLARY 3.4. With the assumptions of Theorem 3.1, Corollary 3.2, or Corol-
lary 3.3, R is Cohen-Macaulay if and only if g &#x3E; 2, or g = 1 and r 0 1, or I is
nilpotent.

Proof. We already know that G is Cohen-Macaulay and that r , Î - g + 1. By
the latter condition, R is Cohen-Macaulay if I is nilpotent. On the other hand, if
I is not nilpotent, then R is Cohen-Macaulay if and only if g &#x3E; 0 and r  1 ([33,
3.6], cf. also [29] and [5]). Il

COROLLARY 3.5. Let R be a local Cohen-Macaulay ring with infinite residue
field, let I be a perfect R-ideal of grade 2 with analytic spread 1 and reduction
number T, and assume that I satisfies Gi. The following are equivalent:

(a) r  î.

(b) r = 0 or r = Î - 1
(c) R is Cohen-Macaulay.

Proof. (a)* (c): This follows from Corollary 3.4 and [33,3.6] (or [29], [5]).
(a) =&#x3E; (b): If r  0, then r &#x3E;, î - 1, as can be seen from the Approximation

Complex (cf., e.g., [39, the proof of 2.5], or Proposition 4.10). D

EXAMPLE 3.6. (cf. also [38, 2.12 and 4.12]). Let k be a local Gorenstein ring with
infinite residue field, let X be an altemating 5 by 5 matrix of variables, let Y be
a 5 by 1 matrix of variables, set R = k[X, Y] (possibly localized at the irrelevant
maximal ideal), and let I = Pf4 (X) + 7i(XV) be the ideal generated by the 4 by
4 Pfaffians of X and the entries of the product matrix XY.

This example has already played some role in the study of minimal free res-
olutions ([34]). Furthermore, RI l is itself the associated graded ring of the ideal
P/4(X) in k[X] ([25, 2.2]). From the latter description one concludes that grade
I = 5, that I is a complete intersection in codimension 9 ([24, the proof of Propo-
sition 2.1]), and that R/I is Cohen-Macaulay ([25, 2.2]). Furthermore, É(1) = 9,
and a computation using MACAULAY shows that Rllj is Cohen-Macaulay for
2  j  3. Thus I satisfies AN7 (Theorem 2.2 (a)), and therefore r (I ) = 1

(Proposition 4.7).
Hence we may apply Corollary 3.4 to conclude that R is Cohen-Macaulay.

We now tum to the proof of Theorem 3.1. The statement of this theorem was
somewhat inspired by [35], the proof we present however, is quite different. It is
based on the next proposition, which provides a general criterion for a homogeneous
ring to be Cohen-Macaulay. As a matter of notation, we write [M],&#x3E;i for the
truncated submodule 0153 ji Mj of a graded module M = (Dj Mj.

PROPOSITION 3.7. Let S be a homogeneous Noetherian ring of dimension d with
So local, write I = S+, let b1, ... , bi be linear forms in S, set bi = (b1, ... , bi)
for - 1  i  1 (where (0) = 0), J = bi, and let g be an integer with 0  g  1.
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Further let H’ ( - ) denote local cohomology with support in the irrelevant maximal
ideal of S.

Assume that Ik+1 C J (i. e., J is a reduction of I with rj(I)  k), that
[bi : (b2+1 )J&#x3E;i-9+1 = [bj] ç-g+1 for 0  i  1 - 1, that depth [Slbi]i-,+l &#x3E;1
d-i- 1forg - 1 , i  l- 1, and that depth [SIJ]J &#x3E; d-1 for 1-g+ 1  j , k.

Then S is a Cohen-Macaulay ring. Furthermore, socle( Hd( S)) is concentrated
in degrees at least -g and at most maxt - g, k - l).

Proof. To simplify notation we factor out bg and assume g = 0 (notice that
b1, ... , bg form an S-regular sequence and that [S / bg-l]O = So = [S/ b- i ]o). Now
[bi : (bç+i )] zç+i = [bi]&#x3E; ,i+l whenever 0 i  1 - 1, depth [S/bç-i]ç ) d - i
whenever 0  i  î, and depth [S/J] j ) d - 1 whenever 1 + 1  j  k.

For 0 i  l consider the graded S-modules M(i) = [S/bil&#x3E;,i+i 1 , i+l/biii,
and N(i) = ii/bi-lii-1 + bili (where l-1 = 10 = S). Notice that [N(i)],&#x3E;i+l =
M(i) and [N(i)]i = [S/ bj- i ]j , which yields exact sequences

On the other hand, if 0  i  1 - 1, then N(i+ 1) = M(j) / bi+ 1 M(j), and since
[bi : (bi+l)]i+l 1 = [bi],&#x3E;i+l 1 it follows that 0 :M(i) (bi+1) = 0. Thus, in the range
0  i , 1 - 1, we have the exact sequences

Also notice that N(o) = S. Hence it suffices to prove by decreasing induction on
i, 0  i  î, that depthsN(ç) ) d - i, and that socle(Hd-i(N(,») is concentrated
in degrees at least i and at most maxti, k - î + i}.

If i = î, then N(j) = [S/bl-l]l C 0153J=l+I[SIJ]j has depth at least d - £ as
an So-module, and hence as an S-module as well. Furthermore, Hd-l(N(l)) is
concentrated in degrees at last 1 and at most maxtl, k} (see, e.g., [10, 2.2]).

So let 0  i  l - 1 and suppose that our assertions hold for i + 1. From (3.9),
since bi+1 is regular on M(i)’ we see that

Then (3.9) yields an exact sequence

which implies

On the other hand, depths[S/bi-I]j = depths,,[S/bi-ili &#x3E; d - i. Hence (3.8)
and (3.10) show that depthSN(j) &#x3E;, d - i. Furthermore, (3.8) induces an exact

sequence
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Now taking socles and using (3.12) as well as (3.11), we conclude from our
induction hypothesis that socle(Hd-i(N(,») is concentrated in degrees at least i
and at most max{ i, k - î + i}. Il

We are now ready to prove a special case of Theorem 3.1, and to provide some
information about the canonical module wG, which will be needed in the last section
of this paper.

PROPOSITION 3.13. Let R be a local Cohen-Macaulay ring of dimension d with
infinite residue field, let I be an R-ideal with grade g, analytic spread l, and
reduction number r, assume that I satisfies Gl and ANl--3 locally in codimension
l - 1, that depth R / I ) d - g - j + 1 for 1  j  1 - g + 1, and that r  1 - g + 1.

Then G = gr/CR) is Cohen-Macaulay. Furthermore, WG (in case it exists) is
generated in degrees min{g, l - r} and g.

Proof. Let J be a minimal reduction of I with r J(I) = r, let a1, ... , al and
ai be as defined in Lemma 2.8, and let ai denote the image of ai in [G] 1. We
wish to apply Proposition 3.7 with k = maxtî - g, r } to the ring S = G and the
linear forms bi = a, 1 , i  l. From Lemma 2.8 (b) with t = g - 1 we already
know that [bi : (bi+,)]&#x3E; = [bç]&#x3E;ç-g+i for 0  i  1 - 1. Thus it suffices
to verify that depth [S/bç]ç-g+i ) d - i - 1 for g - 1  i  l - 1, and that
depth [S/J] i-g+i j d - l.

Since [bi : (bj+i )]&#x3E;j-g+i = [bj]&#x3E;ç-g+i for 0  i , 1 - 1, there are exact

sequences

whenever 0  i  l - 1 and j &#x3E; i - g + 1. On the other hand by our assumption,
depth [S/bo]j = depth [S]j &#x3E;, d - g - j for j  1 - g. Hence using (3.14), we
can see by induction on i that depth [S / bi]j d - 9 - j whenever 0 i  l - 1
and i - g + 1 , j  î - g. In particular, depth [Slbi]i-g+l &#x3E;, d - i - 1 for

0  i  l - 1. As to [S/J]i-g+i , notice that this module is I’-9+’IJII-9 +
Il-g+2 == I1-g+I 1 J I1-g + J 11-g+1 1 = I1-g+1 IJI£-g, which has the required
depth by Lemma 2.5 (a).
Now Proposition 3.7 and local duality imply that G is Cohen-Macaulay, and

that WG is generated in degrees min{g, £ - k} = min{g, £ - r } and g. D

We will need the following special case of [20, 2.9], which we prove using an
argument from [41]:

PROPOSITION 3.15. Let R be a local Cohen-Macaulay ring of dimension d, let
I be an R-ideal with 12 = aI for some a E I, assume that Ip - 0 for every
associated prime p of R containing I, and that depth R / I ) d - 1.

Then G = gr/CR) is Cohen-Macaulay.
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Proof. The R-homomorphism from the polynomial ring R[T] to the Rees alge-
bra R = R[It] sending T to at, induces a homomorphism of R[T]-modules
p : IR[T] - IR[It]. Now p is surjective because 12 = al, and p is injective
because Ip = 0 for every p E V(I) fl Ass(R) and hence [0 : (aj)] n i = 0 for
every j # 1. Thus IR[It] ÉÉ IR[T] has depth at least d + 1. Now a depth chase
using the two exact sequences

shows that G has depth at least d. o

We are now ready to complete the proof of Theorem 3.1. The main idea is to
deduce this theorem from Proposition 3.13, by factoring out a suitable link of the
ideal and thereby lowering the analytic deviation (this method has been employed
by other authors, e.g., [12] and [35], or earlier, but in a different context, [22], [26],
[19]).

The Proof of Theorem 3.1. Write 9 = grade I and 6 = b(I) == î - g + 1 - k,
and recall that b &#x3E; 0. We are going to induct on b, the case 6 = 0 being covered by
Proposition 3.13. Thus we may assume that b &#x3E;, 1 and that the assertion holds for

smaller values of b. Now g + k &#x3E; g + 1.
We adopt the notation of Lemma 2.8. By that lemma, a. nIJ - a_qI3- 1 forj &#x3E; 1,

and, equivalently, a, ... a’ q from a G-regular sequence. Thus we do not change
our assumptions and the conclusion if we factor out ag to assume that 9 = 0
(thereby d and i decrease by g, whereas k may be taken to remain unchanged).
Now &#x3E; k &#x3E;, 1, and in particular, I satisfies G1 and therefore Ip = 0 for every
p e V(I) n Ass(R). Thus if l = 1, then our assertion follows from Proposition
3.15.

Hence we may assume that l &#x3E;, max{2, k}, in which case I satisfies ANj.
Write Il = 0 : I and let ‘ - ’ denote images in R = R/K. Now R is Cohen-
Macaulay since I satisfies AND, and by Lemmas 2.3 (c) and 2.4 (b), I n E =
0, grade 7=1,7 still satisfies Gi and ANR,--3 locally in codimension 1 - 1, and
I is ANR,--max{2,k}. Furthermore, dim R = dim R = d; and since I n Il = 0, we
have i(i) = l(I) = l and thus may be taken to remain unchanged. Therefore
bel) = l - grade I + 1 - k  î + 1 - k = b ( I ) . Again, as I n K = 0, we have
an exact sequence

where depth Il = d since depth = d. Now by (3.16), depth R- /1 &#x3E; min{depth K -
1, depth RIII &#x3E;, min{ d -1, d - £ + k -I} = d - Î + k - 1, where the latter equality
holds because 1 &#x3E; k. Furthermore, again by (3.16), h-1 /h ^_-’ Ij-l IIj for j &#x3E; 2,
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and we conclude that depth Rlii &#x3E; d - î + k - j whenever j  k. Thus we may
apply our induction hypothesis to conclude that grl(É) is Cohen-Macaulay, and
hence by (3.16), gr,(R) has the same property. 0

4. The Defining Equations for Rand G

We are now going to use the results of Section 2, in particular Lemmas 2.5 (a) and
2.8 (b), to investigate the reduction number of I and to study the defining equations
and the resolution of R and of G.

Let S be a homogeneous Noetherian ring with A = So local, present S  B/Q
as an epimorphic image of a (standard graded) polynomial ring B = A [Tl , ... , Tin],
and let F, with Fi = EDi B( -nij) be a homogeneous minimal free B-resolution
of S. Writing ai(S+, S) = max{j 1 [H’ (S)]- 0 01, one defines the Castelnuovo-
Mumford regularity reg(S) of S as max{ai(S+, S) + i  1 i &#x3E; 01. It tums out that
reg(S) = maxtnij - i 1 i &#x3E; 0 and j arbitrary} ([32], [8]). On the other hand, if
S = R (and n &#x3E;, 2), then the maximal degree occurring in a homogeneous minimal
generating set of the defining ideal Q is called the relation type of I and is denoted
by rt(I). Notice that by the above discussion, rt(I) , reg(R) + 1.
We begin by comparing the Castelnuovo-Mumford regularities of R and G.

PROPOSITION 4.1. Let R be a Noetherian local ring and let I be a (proper)
R-ideal.

Then reg(R) = reg(G).
Proof. We look at the usual exact sequences from [24],

First notice that

Thus by (4.2),

On the other hand, (4.3) gives rise to an exact sequence

which, when combined with (4.4), yields
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provided that i &#x3E; 2 or j =1 -1. Also notice that Hi + (G) ÉÉ HG+ (G).
Now write s = reg(TZ) and t = reg(G), and note that s &#x3E; 0, t ,&#x3E;, 0. By (4.5), if

i &#x3E; 2 then HG+ (G) is concentrated in degrees  s - i, and if i  1 then HG+ (G) is
concentrated in degrees  max{ s - i, - 1} = s - i. Thus reg(G)  s. On the other
hand, again by (4.5), if i &#x3E; 2 then Hi + (R) is concentrated in degrees  t - i,
and if i  1 then Hk+ (R) is concentrated in degrees  maxlt - i, - 1 t - i.
Therefore reg(IZ)  t. D

Our next proposition gives a degree bound for the syzygies of n and G. Con-
versely, it can also be used to determine the reduction number of the ideal I from
the shifts in the resolution of R (which is often easier to compute than the resolution
of G).

PROPOSITION 4.6. If in addition to the assumptions of Theorem 3.1, 1 satisfies
AN£--2’ then

In particular, Tt(I) fi r + 1. Furthermore, r J(I) = r does not depend on the
choice of a minimal reduction J of I.

Proof. By Proposition 4.1, reg(R) = reg( G). On the other hand, combining
Lemma 2.8 (b) with [36, 3.3], we conclude that reg(G) = r. Furthermore one

always has r  r J( 1), whereas by [36, 3.2], T j(I) fi reg(G). Thus rj(7) = r. D

Using the above proposition, we are now going to show that it suffices to check
one of the assumptions of Theorem 3.1 locally in codimension l (generalizing
results from [20], [21], [41], [38], [33]).

PROPOSITION 4.7. Let R be a local Cohen-Macaulay ring of dimension d with
infinite residue field, let I be an R-ideal with analytic spread l and reduction
number r, let k ) 1 be an integer, assume that I satisfies Gl and ANl--2 locally in
codimension l, that I satisfies AN1--k-l’ and that depth R /I j d - l + k - j for
1 $ j $ k. The following are equivalent:

(a) T(Ip) fi k for every p e V(I) with dim Rp = 2  &#x3E;(Ip).
(b) T X k.

Proof Let J be a minimal reduction of I with T j(I) = r. By [38, 1.11], Jp
is a minimal reduction of Ip for every p E V(I) with dimRp = 2  &#x3E;(Ip ), and
therefore by Proposition 4.6, yjp(Tp) = r(Ip).

(a) =&#x3E; (b): We need to verify that 1;+1 = JpT for every p e Ass(R/JIk).
Now by Remark 2.7 and Lemma 2.5 (a), dimRp  l, and by [38, 1.11] we may
assume that dim Rp = l  &#x3E;(Ip), since otherwise Ip = Jp. But for such prime
ideals we have just seen that r Jp(Ip) = T(Ip) fi k.
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We now wish to further investigate the defining equations of R and G. To do
so it suffices to consider the ideals ,A and ,Ci of the symmetric algebras S(I) and
S(1112) that fit into the natural exact sequences

and

PROPOSITION 4.10. Let R be a local Gorenstein ring with infinite residue
field, let I be an R-ideal with grade g, analytic spread 1, minimal number of
generators n, and reduction number r, assume that I satisfies G l, that the

Koszul homology modules Hj(I) are Cohen-Macaulay whenever 0  j  1 - g,
and that r  1 - g + 1. Further let J = (a 1, ..., ai) be a minimal reduction of I,
let B = R[TI’...’ Tl] be a polynomial ring, and consider S(I) and R as
B-modules via the R-algebra homomorphisms mapping Ti to ai E I = [S(I)]1
and to 0, respectively.

Then A 0B R EÉ [S(IIJ)]&#x3E;,£-,+2 and B 0B R  [S(IIJ + 12)]l-g+2. In
particular, the ideals A and B are minimally generated by n-_q+l ) forms of degree
é - g + 2.

Proof. We first show that A 0B R £É [S(IIJ)]&#x3E;,£-g+2-
From our assumption on the Koszul homology modules we know that the graded

pieces [M]j of the M -complex are acyclic for 0  j  î - g ([17, the proof of
5.1]). By the acyclicity of these complexes, Sj(I) h ([17, the proof of 4.6])
and depth R/I3 &#x3E; d - g - j + 1 in the range 1  j 1 - g + 1. Thus [A]j = 0
whenever j  î - g + 1, and I satisfies ANl--2 (Theorem 2.2 (a)). Furthermore by
Proposition 4.6, rj(I) = r, and hence Lemma 2.8 applies to the ideal J.

After changing the generators of al, ... , al of J if needed, we conclude from that
lemma that in G, [(ai,..., ai) : (ai+l )]l-g+l = [(ai,..., a) )] z i-g+i whenever
0  i  l-1. Thus in R, [(ait,..., ait) : (aç+ i t)] &#x3E; i-g+ i [(ait,..., açt)] &#x3E; i-g+ 1
whenever 0  i  1 - 1, as can be seen from [4, the proof of 6.5]. Now let H
denote Koszul homology with values in R. Using the long exact sequence

and induction on i, one concludes that [Hi(ait, ... ajt)]&#x3E;i-g+2 = 0 whenever
0 , i , 1 (cf. also [4, 4.4]). In particular, [Torf(R, R)]&#x3E;i-g+2 = [Hi(ait, ... ,
aÉt)] )É- g+2 = 0.
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On the other hand, we had seen that [A]j = 0 whenever j  1 - g + 1. Thus
applying - 0B R to (4.8) yields an exact sequence

Since [n0BB 1 B+]f-g+2 = 0, we deduce that [A0BR]f-g+2  [S(I 1 J)]f-g+2,
and therefore A (DB R c--- [S(I 1 J)]f-g+2.

To prove the remaining assertions of the proposition, notice that upon applying
- 0p R/I to the latter isomorphism, one obtains a commutative diagram

where p is surjective. Thus e is an isomorphism as well. Finally, note that both
S(I)-modules [S(IIJ)],&#x3E;,e-,+2 and [S(I/J + 12)]l_g+2,are minimally generated
by n-9+ 1 ) homogeneous elements of degree f - g + 2. 0

5. The Gorensteinness of the Associated Graded Ring

Let R be a local Gorenstein ring, let I be a proper R-ideal, and let G stand for the
associated graded ring of I.

The Gorensteinness of G has been investigated under suitable assumptions in
[17, 9.1], [18, 1.3] (in conjunction with [19, 3.6]), [11, 1.3], [13, 1.1], [33, 3.7
and 3.8], [35, 6.1], and [16, 2.1 and 2.5]. These results (except for [16, 2.5]) are
contained in the next two theorems (and their corollaries). After this paper was
written, it came to our attention that other generalizations have been independently
obtained in [14].

THEOREM 5.1. Let R be a local Gorenstein ring of dimension d with infinite
residue field, let I be an R-ideal with grade g, analytic spread î, and reduction
number r, let k &#x3E; 0 be an integer with r  k, assume that I satisfies Gl and
ANl--3 locally in codimension î - 1, that I satisfies ANi- ..f2,kll that depth
R /13 j d - l + k - j + 1 for 1  j  k and that depth R /13 # d - g - j + 1 for
1  j î - g - k.

Then G is Gorenstein.

THEOREM 5.2. Let R be a local Cohen-Macaulay ring ofdimension d with infinite
residue field, let I be an R-ideal with grade g, analytic spread l, and reduction
number r, let k be an integer with 0  k  î - g, assume that I satisfies Ge, that
I is generically a complete intersection, and that G is Gorenstein. The following
are equivalent:
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(a) depth R /I j d - g - j + 1 for 1 fi j fi l - g - k
(b) r  k and I satisfies ANl--k-l.

Combining Theorems 5.1 and 5.2, one immediately obtains the following
characterization:

COROLLARY 5.3. Let R be a local Gorenstein ring of dimension d with infinite
residue field, let I be an R-ideal with grade g, analytic spread 1, and reduction
number r, let k &#x3E; 1 be an integer, assume that I has no embedded associated
primes, that I satisfies Gl and ANl--3 locally in codimension 1 - 1, that I satisfies
ANl-=-max{2,k}’ and that depth RIII &#x3E; d - l + k - j + 1 for 1  j , k. Any two
of the following conditions implies the third one:

(a) r  k. 
(b) depth RI Ij  d - g - j + 1 for 1 fi j fi É - g - k.
(c) G Gorenstein.

Before proving Theorems 5.1 and 5.2 we derive some further consequences.
The next corollary deals with the Rees algebra R = R[It] C R[t].
COROLLARY 5.4. If in addition to the assumptions of Theorem 5.1, g &#x3E;, 1, then

Proof. The assertion follows from Theorem 5.1, Corollary 3.4, and [18, 2.5]. 0

COROLLARY 5.5. Let R be a local Gorenstein ring of dimension d with infinite
residue field, let I be an R-ideal with grade g, analytic spread î, and reduction
number r, assume that I satisfies Gi, that depth RI Ij  d - g - j + 1 for
1  j  l - g, and that r  l - g.

Then r = 0, and I satisfies G 00 and is strongly Cohen-Macaulay.
Proof. We may assume that l &#x3E;, g + 1, since otherwise I is a complete inter-

section. By using Theorem 2.2 (a) and Theorem 5.1 with k î - g we see that G
is Gorenstein, but then Theorem 5.2 with k = 0 implies r = 0. The rest follows
from [38, 2.13]. 0

COROLLARY 5.6. Let R be a local Gorenstein ring of dimension d with infinite
residue field, let I be an R-ideal with grade g, analytic spread 1, and reduction
number r, assume that I is generically a complete intersection, that R/I is Cohen-
Macaulay, and that depth R/Ij ) d - g - j + 1 for 1  j , 1 - g - 1.

Then G is Gorenstein if and only if r  1 and I satisfies Gi.
Proof. By Theorems 2.2 (a), 5.1, and 5.2, it suffices to prove that if G

is Gorenstein then I satisfies G i. Suppose this implication does not hold, and
choose p E V(I) minimal with the property that M(Ip) &#x3E; dim Rp x î - 1. Since
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l(Ip) - grade Ip x É - g - 1, applying Theorem 5.2 with k = 0 to the ideal
Ip shows that r(Ip) = 0. But then t(Ip) == l(Ip)  dim Rp, which yields a
contradiction. c

COROLLARY 5.7. Let R be a local Gorenstein ring, let I be an R-ideal with

grade g and analytic spread Ê, assume that I is generically a complete intersection
and the Koszul homology modules Hj of I are Cohen-Macaulay for 0 , j ,  21 

Then G is Gorenstein if and only if I satisfies G 00 and is strongly Cohen-
Macaulay.

Proof. We may suppose that the residue field of R is infinite. By [17, 9.1]
we are reduced to showing that if G is Gorenstein then I is Goo and strongly
Cohen-Macaulay. Proceeding by induction on d, we may assume that l &#x3E;, g + 1
and that the assertion holds locally on the punctured spectrum of R. Now using
the Approximation Complex, one sees that depth RIII &#x3E; d - g - j + 1 for
1  j  9, and hence by Theorem 5.2, r  2 On the other hand, the
Approximation Complex and our induction hypothesis also imply that either r = 0,
or else r &#x3E; 2 Therefore r = 0, and hence t(I) = l  d. The result now
follows by the duality of Koszul homology ([27, 2.13 and 2.22]). D

To prove the theorems we need the following result:

PROPOSITION 5.8. Let R be a local Cohen-Macaulay ring of dimension d with
infinite residue field and canonical module w, let I be an R-ideal with grade
g, analytic spread Ê, and reduction number r, assume that I satisfies Gl and
ANR--3 locally in codimension 1 - 1, that I satisfies ANmin{R-2,g}’ that depth
RIIJ &#x3E;, d - g - j + Ifor 1 , j  1 - g, and that r g.

Then WG gr(w)( -g).
Proof. Theorem 3.1 already shows that G is Cohen-Macaulay (which is the

only place where the condition ANmin{I-2,g} is used). But then by [18, 2.4], our
assertion is equivalent to saying that WG is generated in degree g, which we may
check after reducing modulo a G-regular sequence in R. Now since G is Cohen-
Macaulay, a sequence of general elements x1, ... , zd-i in R is regular on R and
on G. Furthermore, factoring out these elements does not change our assumptions
(in the setting of the proposition, the local property ANR--3 is equivalent to I being
strongly Cohen-Macaulay locally in codimension 1 - 1, cf. [38, the proof of 2.13],
and the latter condition is preserved under specialization, cf. [27, 2.15]). But after
specializing, d = Ê, hence depth RIII &#x3E; d - g - j + 1 for 1  j : 1 - g + 1. In
this case our assertion follows from Proposition 3.13. D
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The Proof of Theorem 5.1. Adopt the notation of Lemma 2.8, write Ki =
a2 : I for 0  i  1, and K-1 = 0. Our assumptions together with Theorem
2.2 (b), Lemma 2.3 ((c)(iv)), and Lemma 2.8 (a) imply that there are natural
isomorphisms

We now replace the assumption of R being Gorenstein by the weaker condition
that R is Cohen-Macaulay and that (5.9) holds. With this new assumption, we
are going to show that Ú)G gr,(WR)(-9)- We use increasing induction on à =
b (1) == £ - 9 - k  0, the cases 6 = 0 and 6 == £ - 9 being covered by Proposition
5.8.

So let 0  6  t - g. As in the proof of Theorem 3.1, we replace R by
R/(a1, ... , ag) = RI(](g-l, ag), thus reducing to the case g = 0. Write ú) =

WR, K = 0 : I, and let’-’ denote images in R = R/K. Since 1 - g &#x3E; k &#x3E; 0,
we may use the property ANt-l-max{2,k} and (5.9), to conclude that R is Cohen-
Macaulay with wq c-’- IW. Furthermore, by the same arguments as in the proof of
Theorem 3.1, all our assumptions are preserved as we pass from I and R to I and
R (including (5.9), whereas R need no longer be Gorenstein), grade I = 1, and
b(I)  6(I). Thus our induction hypothesis implies that the canonical module of
grl(R) is grr(wr) (- 1), where gr)(-l) = gr, (Iw) (- 1).

Furthermore, by Theorem 3.1, G = grl(R) is Cohen-Macaulay, and from (3.16)
we have an exact sequence

Since the canonical module of grj(R) is grI(Iw)(-1) and since HomG(K, WG)
HomR(](, w), we may dualize (5.10) into wG to nbtain an exact sequence of graded
G-modules,

Now (5.11 ) shows that WG is concentrated in nonnegative degrees and that [wG ] &#x3E; 1 1
can be identified with gr¡(Iw)( -1).

On the other hand, there is the natural exact sequence

Since R ^--’ R/K is Cohen-Macaulay and since wq c- Iw, it follows that w 0R
R/I -’ HomR(K, w), which is a maximal Cohen-Macaulay G-module. Thus dual-
izing (5.12) into CJG, one sees that there exists a homogeneous G-linear map
cp : gr( w) -+ WG lifting the identity on gr,(Iw)(- 1). Now gr( w) is generated in
degree zero, WG is concentrated in nonnegative degrees, and p coincides with the
identity map in positive degrees. Therefore wG is also generated in degree zero,
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which by [ 18, 2.4] means that wG --- gr, (w). 0

The Proof of Theorem 5.2. By [ 15, the proof of (11.16) (b)] R is Gorenstein,
and by [33, 2.1] 1 is unmixed. Furthermore by way of Theorem 2.2 (a), we may
suppose that I satisfies ANf--k-l. With this additional assumption, we are going
to show that (a) holds if and only if r  k.

Since I satisfies Gi, there exists a minimal reduction J of I such that
ht J : I &#x3E; î, and rJ(I) = r (this follows, for instance, from [28, the proof of
3.2] and [33, the proof of 3.4]). Now let a1 ... , al be a generating set of J as in
Lemma 2.3 (a), write ai = (a1,..., ai ) and I(i i = ai : I for 0  i  1, Il- 1 = 0,
and let Si be the associated graded ring of I + Ilç /Ilç in R /Ilç. We may choose
a 1, ... , af so that for 1  i x 1, the image of ai in [Si-I]j 1 does not lie in any
associated prime of Si-l not containing Si-,+.

According to [38, 2.9 and 2.18], (a) is equivalent to

We first prove by induction on î - k - 1, that (5.13) holds if and only if

This equivalence being clear for t - k - 1 = g - 1, we may assume that î - k - 1 &#x3E; g.
By induction hypothesis, we know that (5.13) holds for g i î - k - 2. Thus
by [38, 2.18], depth RIII &#x3E; d - g - j + 1 for 1  j  £ g k - 1, and hence
by Lemma 2.5 (c), I(l-k-l n Il-g-k = a£-k-1 Il-_q-k-1 This equality together
with our induction hypothesis and Lemma 2.3 ((c)(iv)) implies that Il-g-k +

T/’ 1 T/’  Il-g-kl T/’ n h 9 k ^-_’ Il-g-kl T/’ n h +al-k-lIl-g-k-l  IWRI(K£-,k-2,al-,k-l), which establishes the equivalence of
(5.13) and (5.14).
We are now going to prove by induction on 6 = Ê - k &#x3E;, 0 that (5.14) holds

if and only if r  k. To do so, we replace the assumption of I being generically a
complete intersection and of R and G being Gorenstein, by the weaker condition
that R is Cohen-Macaulay with canonical module w and G is Cohen-Macaulay
with WG grI (w ) ( -g ) (that this isomorphism holds if G is Gorenstein, follows
from [33, the proof of 2.1]). Write a(G) = - min{jl[wG]j =1 0) . Now for b = 0,
(5.14) is trivially satisfied, and on the other hand r  l + a(G) = 1 - g ([33,
3.5]).

So let b &#x3E; 0. By our choice of al, ... , al, the images a1, ... , a’ in [G]1 form
a G-regular sequence, and we do not change our assumptions and conclusions by
factoring out al , ... , ag, thus reducing to the case g = 0. Write Il = 0 : I and
let ‘ ’ denote images in R = R/K. Since b &#x3E; 0, 1 satisfies AN 0’ and thus R
is Cohen-Macaulay. Furthermore, Gl and ANi-k-l still hold for I (Lemma 2.4

(b)), and l(Î) = Ê, r(Î) = r, grade I = 1 (Lemma 2.3 (c)), which shows that

b(l)  b.
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As in the proof of Theorem 5.1, we have an exact sequence

which upon dualizing into wG yields

On the other hand, the exact sequence of maximal Cohen-Macaulay R-modules,

gives rise to

Since [WGIO wliw, comparing (5.16) and (5.17) shows that [p]o is surjective.
Thus p is surjective, hence Ext’G(grr(R), wG) = 0, and therefore by (5.15), grl(R)
is Cohen-Macaulay. Now if (5.14) holds, thenwR Iw, and thus again by compar-
ing (5.16) and (5.17) we see that [p]o is an isomorphism. Therefore wgr,(R) has all
its generators in degree one, and hence by [18, 2.4], WgrÏ(R)  grl (wq) 1 ). Con-
versely, if T fi k, then [33, 3.5] implies that a(grl(R)) = max{-grade I, r(I) -
£(l)} == max{-I,r - £} == -1. Thus also in this case [p]o is an isomorphism.
Hence by (5.16) and [18, 2.4], WgrÏ(R)  grr(WR)( -1), and by (5.17), WR IW.
Therefore in either case, wR IW and grr(R) is Cohen-Macaulay with canonical
module grl (Wq) (- 1 ) - 

Thus all our assumptions are preserved as we pass from I to I, except that
now b(I)  b. Moreover since wR Iw, (5.14) holds for I if and only if it
holds for I, and by induction hypothesis, the latter condition is equivalent to
r = r(I)  k. D
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