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Abstract. We show that every sub-weak embedding of any non-singular orthogonal or unitary polar
space of rank at least 3 in a projective space PG(d, JI{), K a commutative field, is a full embedding in
some subspace PG(d, IF), where IF is a subfield of K; the same theorem is proved for every sub-weak
embedding of any non-singular symplectic polar space of rank at least 3 in PG(d, K), where the
field IF’ over which the symplectic polarity is defined is perfect in the case that the characteristic of
IF’ is two and the secant lines of the embedded polar space F contain exactly two points of F. This
generalizes a result announcedby LEFÈVRE-PERCSY [5] more than ten years ago, but never published.
We also show that every quadric defined over a subfield IF of K extends uniquely to a quadric over
the groundfield K, except in a few well-known cases.
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1. Introduction and statement of the results

In this paper we always assume that K and IF are commutative fields. Any polar
space considered in this paper is assumed to be non-degenerate (which means that
no point of the polar space is collinear with all points of the polar space), unless
explicitly mentioned otherwise.
A weak embedding of a point-line geometry r with point set S in a projective

space PG(d, K) is a monomorphism 0 of F into the geometry of points and lines
of PG(d, K) such that

(WE1) the set So generates PG(d, K),
(WE2) for any point x of F, the subspace generated by the set X == {yBlly e s is

collinear with x} meets So precisely in X ,
(WE3) if for two lines L1 and L2 of r the images Le and L 0 meet in some point

x, then x belongs to Se.

In such a case we say that the image fB of F is weakly embedded in PG(d, K).
A full embedding in PG(d, K) is a weak embedding with the additional property

that for every line L, all points of PG( d, K) on the line Lo have an inverse image
under ().

* The second author is Senior Research Associate of the Belgian National Fund for Scientific
Research
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Weak embeddings were introduced in [3,5]; in these papers she announced the
classification of all weakly embedded finite polar spaces (clearly the polar spaces
are considered here as point-line geometries) having the additional property that
there exists a line of PG(d, K) which does not belong to re and which meets SB
in at least three points. Only the case d = 3, IKI  oo and rank ( r ) = 2 was
published [4]. The question arose again in connection with full embeddings of
generalized hexagons (see [7]) and a proof seemed desirable. In the present paper,
we will first show that the condition (WE3) is superfluous and then classify all -
finite and infinite - weakly embedded non-singular polar spaces of rank at least 3
of orthogonal, symplectic or unitary type, assuming that for the symplectic type the
field e over which the symplectic polarity is defined is perfect in the case that e has
characteristic two and no line of PG(d, K) which does not belong to Io intersects
Se in at least three points. The classification of all generalized quadrangles weakly
embedded in finite projective space can be found in [8].
We call a monomorphism 0 from the point-line geometry of a polar space r with

point set S to the point-line geometry of a projective space PG(d, K) a sub-weak
embedding if it satisfies conditions (WEI) and (WE2). Usually, we simply say that
r is weakly or sub-weakly embedded in PG( d, IK) without referring to 0, that is,
we identify the points and lines of r with their images in PG(d, K). In such a case
the set of all points of r on a line L of r will be denoted by L *.

If the polar space T arises from a quadric it is called orthogonal, if it arises from
a hermitian variety it is called unitary, and if it arises from a symplectic polarity it
is called symplectic. In these cases r is called non-singular either if the hermitian
variety is non-singular, or if the symplectic polarity is non-singular, or if the quadric
is non-singular (in the sense that the quadric Q, as algebraic hypersurface, contains
no singular point over the algebraic closure of the ground field over which Q is
defined); in the symplectic and hermitian case this is equivalent to assuming that
the corresponding matrix is non-singular. In the orthogonal case with characteristic
not 2, in the symplectic case and in the hermitian case, r is non-singular if and only
if it is non-degenerate; in the orthogonal case with characteristic 2, non-singular
implies non-degenerate, but when not every element of K is a square, and only
then, a non-degenerate quadric may be singular.

Our main results read as follows.

THEOREM 1 Let I’ be a non-singular polar space of rank at least 3 arising
from a quadric, a hermitian (unitary) variety or a symplectic polarity, and let r be
sub-weakly embedded in the projective space PG(d, K), where for r symplectic the
polarity is defined over a perfect field JF’ in the case that IF’ has characteristic two
and the secant lines of r contain exactly two points of r. Then r is fully embedded
in some subspace PG( d, JF) of PG( d, K), for some subfield IF of K
If I’ is finite, then it is automatically of one of the three types mentioned. Moreover,
it is non-degenerate if and only if it is non-singular. Combining this with [8], we
have
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COROLLARY 1 (i) Let r be a non-degenerate polar space sub-weakly embedded
in the finite projective space PG(d, q). Then r is fully embedded in some subspace
PG(d, q’) of PG(d, q), for some subfield GF(q’) of GF(q), unless r is the unique
generalized quadrangle of order (2, 2) universally embedded in PG(4, q) with q
odd.

(ii) Let r be a finite non-degenerate polar space of rank at least 3 sub-weakly
embedded in the projective space PG(d, K), Then r is fully embedded in some
subspace PG(d, q) of PG(d, K), for some subfield GF(q) of K
Our second main result might belong to folklore but we give a full proof here.

THEOREM 2 (i) Let Q be a non-degenerate non-empty quadric of PG(d, IF),
d &#x3E;, 2, and let K be a field containing IF. Then in the corresponding extension
PG(d, K) of PG(d, IF) there exists a unique quadric containing Q, except if d = 2
and IF E {GF(2), GF(3)}, or d = 3,1F = GF(2) and Q is of elliptic type.

(ii) Let r be a non-singular symplectic polar space defined by a symplectic
polarity in PG(d, IF), d &#x3E; 3, and let K be a field extending IF. Then in the corre-
sponding extension PG(d, K) of PG(d, IF), there exists a unique symplectic polarity
whose corresponding polar space contains r.

(iii) Let H be a non-singular non-empty hermitian variety of PG(d, IF), d &#x3E;, 2,
with associated IF-involution u, and let K be a field containing IF admitting a
K-involution T the restriction of which to IF is exactly o,. Then in the correspond-
ing extension PG(d, K) of PG(d, IF) there exists a unique hermitian variety with
associated field involution r and containing H.

Remark It is now easy to extend Theorem 2 to the singular cases with at least
one non-singular point over IF. Again the extension of the polar space r is unique,
except for r orthogonal and IF E {GF(2), GF(3)}.

2. Proof of Theorem 1

In the sequel, we adopt the notation xL for the set of all points collinear with the
point x in a polar space. After having coordinatized PG(d, K), we denote by ei,
1 , i  d+ 1, the point with coordinates (0, ... , 0, 1, 0, ... , 0), where the 1 is in the
ith position. By generalizing this, we denote by ej the point with every coordinate
equal to 0 except in each position belonging to the set J, J C {1, 2, ... , d + 1},
where the coordinate equals 1. We also remark that polar spaces are Shult spaces,
i.e. for every point x and every line L, xL contains either all points of L or exactly
one point of L (we will call that property the Buekenhout-Shult axiom).
We prove Theorem 1 in a sequence of lemmas.

LEMMA 1 If L is a line of the sub-weakly embedded polar space r, then the only
points of r on L are the points of L*.

Proof Let x be a point of r on L with x e L *. By the Buekenhout-Shult axiom
L* contains a point y collinear with x. So the lines xy and L of r coincide in
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PG(d, K), contradicting the fact that 0 is a monomorphism. o

LEMMA 2 Every sub-weak embedding of a non-degenerate polar space is also a
weak embedding.

Proof Let r be a polar space sub-weakly embedded in PG( d, K) for some field
K Let L 1 and L2 be two lines of F meeting in a point x of PG( d, K) which does
not belong to S, the point set of F. If some point y of r is collinear with all points
of L*, then y.l contains a triangle of the plane L 1 L2 of PG(d, K) (y.l contains
some point of L2 by the Buekenhout-Shult axiom). Hence (WE2) implies that
y is collinear with all points of L2 . If we let y vary on Li, then we see that all
points of Li are collinear with all points of Li, in other words, Li and L* span a
3-dimensional singular subspace S of r. Since F is non-degenerate, no point of S
is collinear with all other points of F, hence there exists a point z of r not collinear
with all points of S. It is easily seen that z1 meets S in the point set of a plane x of
r. Since any two lines of r in x generate the plane L1 L2, the points of x span the
plane L 1 L2 of PG( d, K). By (WE2), z.l must contain all points of S (since they
all lie in LI L2), a contradiction. 0

Let L be any line of PG(d, K) containing at least two points of F which are not
collinear in r. Then we call L a secant line. By Lemma 1, no secant line contains
two collinear points. The following result is due to Lefèvre-Percsy [3].

LEMMA 3 The number of points ofr on a secant line is a constant.

We put that number equal to b (6 is possibly an infinite cardinal) and call it the
degree of the embedding.

We now prepare the proof of the case b = 2 by first proving a lemma which
certainly belongs to folklore.
A kernel of a non-empty non-singular quadric in a projective space is any point

belonging to every tangent hyperplane of the quadric. As the quadric is non-singular
a kemel does not belong to the quadric. The subspace of all kemels is sometimes
called the radical of the quadric.
LEMMA 4 Every non-empty non-singular quadric has at most one kernel.

Proof Suppose that the non-singular non-empty quadric r of PG( d, K) has a
radical V of dimension at least one. Extend r over the algebraic closure K of K
to the non-singular quadric r. Then F n V, with V the corresponding extension
of V, is a non-empty quadric. Let x be a point of it. Every line x p with p e r,
p # x, is a tangent line of F and all these lines generate the whole projective space
PG(d, R). This yields a contradiction as all tangent lines of r at x lie in the tangent
hyperplane of F at x. D

LEMMA 5 Let F be a non-singular polar space of rank at least 3 arising from a
quadric, a hermitian (unitary) variety or a symplectic polarity, where for r sym-
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plectic the polarity is defined over a perfect field F’ in the characteristic two case,
and let r be sub-weakly embedded of degree 2 in the projective space PG(d, K).
Then r is fully embedded in some subspace PG(d, IF) of PG(d, K), for some subfield
JF of K

Proof We label the steps of the proof for future reference.
(a) Let r be a non-singular orthogonal polar space sub-weakly embedded in

PG( d, OC), d &#x3E; 3, and suppose that F has rank at least 3. We identify the points and
lines of F with the corresponding points and lines of PG( d, K). Let x be any plane
of r. Three non-concurrent lines of x span a unique plane 1r’ of PG(d,K). Any
other line of x meets these three lines in at least two points, hence we see that 1r’ is
uniquely determined by 1r; moreover, the points and lines of x determine a unique
subplane of x’. Hence x is isomorphic to a projective plane over some subfield 1F
of K. Moreover, since r is residually connected (as a polar space or a building,
see e. g. [1]), F is independent from x. Hence, if we coordinatize PG ( d, K), then
every re-coordinatization by means of a linear transformation (so without using a
field automorphism) which maps the points e1, e2, e3 and e{1,2,3} onto points of 7r,
defines a subfield F of K which is independent of the choice of x and where IF is
equal to the set of quotients of possible coordinates (in the new coordinate system)
for points of 7r. This implies that the set of all points of F on any line of F is uniquely
determined in PG(d, K) by any three of its points; indeed, re-coordinatize so that
these points become e1, e2 and e{1,2}’ and then all points of the line are obtained by
taking all linear combinations of the vectors ( 1, 0, ... , 0) and (0, 1, 0, ... , 0) over
IF. All this shows that not only the isomorphism type of F is fixed, but also the
subfield F itself.

(b) Now consider a line L of r and a point x 1 of F on it. Through x 1 there is
a line Mi of r with the property that L and MI are not in a common plane of F.
Now we take a point yl of r not collinear with x 1 and we consider the unique line
L2 of r passing through yi and meeting Mi in a point of r. Now we show that in
r no point on L2 is collinear with all points of L 1. The point x 1 is not collinear
with y,, and as L 1 and Mi are not in a common plane of r the point Mi n L2 is
not collinear with all points of L 1. As x 1 is not collinear with yl , it is not collinear
with two distinct points of L2; hence no point of L2 different from yl and Ml n L2
is collinear with all points of L 1. Similarly, in r no point on L 1 is collinear with all
points on L2. If L 1 and L2 would span a plane L1 L2, then every point of L2 is in the
space spanned by xl. for every x e L i , since there is at least one point of xl. on L*2 .
So by (WE2) the point x E Li is collinear with every point of L2, a contradiction.
Hence L and L2 generate a 3-space U of PG( d, K). In r the lines LI, L2 and their
points generate a polar space S2; Q corresponds to a hyperbolic quadric Q+ (of a
3-space) on the non-singular quadric from which r arises. The point set of Q will
also be denoted by Q t ’ and the sets of lines of Q corresponding to the reguli of Q +
will also be called the reguli of Q. Since all points of Q lie on lines meeting both
L and L2, we see that S2 is entirely contained in U. Let M2 # Mi belong to the
regulus of n defined by Ml. Put X2 =LI n M2, X3 = L2 n MI and X4 = L2 n M2.
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Let xs be one further point of Q not on one of the lines L1, L2, Ml, M2 and let L3,
respectively M3, be the line of Q through x5 and belonging to the regulus defined
by L1, respectively Ml . No four of the points {X1, X2, x3, x4, X5} are coplanar, so
they determine a unique subspace V of U over F.

(c) We claim that n is fully embedded in V, that is, we claim that all points of S2
are contained in V. Indeed, the points on LI in V are uniquely determined by the
three points XI, x2 and M3 n LI. But as remarked above, these points are precisely
all points of r on L 1. Similarly for L2, MI and M2. Let M4 be a line of Q meeting
L1, L2 in points of n, so of V, with Mi # M4 # M2 ; then M4 is a line of V. As
L3 is a line of V, also L3 n M4 is a point of V. It follows that the points of M4 in
V are exactly the points of M4 in n. Similarly, for any line L4 of n meeting M1,
M2 in points of Q, the points of L4 in V are exactly the points of L4 in S2. If y is
any point of Q, then the line of F through y meeting L1, L2, respectively Ml , M2,
contains at least two points of V, and hence the intersection y of these two lines
also belongs to V. This shows our claim.

(d) Next we prove that no other point of r belongs to U. Indeed, suppose the
point z of r lies in U, but is not contained in n. Then z does not belong to V since
the unique line M in V through z meeting both L and L2 contains three points of
r, say z, x 1, x4, hence belongs to r, contradicting the fact that z does not belong
to Q. In F the points of Q collinear with z either are all the points of Q, or are the
points of a point set C of Q corresponding to a non-singular conic of the hyperbolic
quadric Q ) , or are the points of n on two lines of H, say L and Mi. Noticing that
for every point y of n, the space generated by y 1 in PG(d, K) meets U in a plane
(by axiom (WE2)), we see that in the first case z must lie in every plane containing
two lines of n. This yields a contradiction since these planes have no intersection
point in V, hence neither in U. In the second case z must lie in the planes tangent
to Q+ at points of C. These planes meet in at most one point, which lies in V, a
contradiction. In the third case z must lie in all planes of V containing L or Ml,
hence z = x 1, a contradiction. This proves our claim.

(e) An orthogonal subspace of r containing lines is called s-dimensional if
the corresponding subquadric on the quadric from which F arises generates an
(s +1 )-dimensional space. Now suppose that any (c -1 )-dimensional non-singular
orthogonal subspace Q’ of r containing lines is fully embedded in a c-dimensional
projective subspace over F of PG(d,K), 3  c  d - 1. We show that, if Q is a
c-dimensional non-singular orthogonal subspace of F containing lines, then Q is
fully embedded in some (c + 1 )-dimensional projective subspace PG(c + 1, IF) of
PG(c + 1, K). Since Q is non-singular, it contains some (c - 1 )-dimensional non-
singular orthogonal subspace n’ containing lines. By assumption n’ is contained
in a c-dimensional projective space V’ over IF. Let U’ be the extension of V’ over
K. We first show that U’ does not contain any point of Q ) n’. Let the point x
of Q ) n’ belong to U’. Then x 1 and the point set of n’ intersect in a point set
Q" which corresponds to a non-singular subquadric of the quadric from which r
arises. By (WE2) Q" is contained in a (c - 1 )-dimensional subspace V" of V’.
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Assume that Q" does not generate V". Then n’ contains a point u of V" not on Q".
Every line of n’ through u contains a point of x1, so every line of n’ through u
contains a point of Q ". Hence V" contains all lines of n’ through u. Analogously,
V" contains all lines of Q’ through u’, with u’ 0 u a second point of n’ in V" B Q".
So the tangent hyperplanes of the point set of n’ at u and u’ coincide with V", a
contradiction. We conclude that Q" generates V". The extension of V" over K will
be denoted by U". If x e U", then xl. n U’ spans U‘, hence by (WE2) all points
of Q’ are collinear with x, a contradiction. So x E U". Let y be a point of Q" and
let V’ be the tangent hyperplane of n’ at y ; the extension of Vÿ to K is denoted
by U’. If x e U00FF, then the space generated by x and U00FF is U’, so by (WE2) yl.
contains all points of n’, a contradiction. Hence x E U00FF . Let V00FF’ be the tangent
hyperplane of Q" at y, and let U" be the extension of V" to K; then V" = V n V"y y y y

and uy" = U00FF f1 U". As x E U", we have x E U00FF for every point y of Q". This
implies that x e V" and that x is the unique kemel of Q" in V". Since Q" has a
unique kemel, the dimension c - 1 of the space generated by Q" is even and the
matrix defined by Q" has rank equal to c - 1. If x is also a kemel of Q’, then as
c + 1 is even Q’ admits at least a line L of kemels. Over the algebraic closure F
of IF the extension L of L contains a point r of the extension D’ of Q’. The point
r is singular for e, hence n’ is singular, a contradiction. Consequently x is not a
kemel for n’. Hence there is a line N of V’ containing x and two distinct points
yl , y2 of Q’. Since the degree of the weak embedding is equal to 2, N is a line of
r, so y1 = y2 E Q", a contradiction. It follows that U’ does not contain any point
of Q B Q’.

(f) Let x 1 be any point of fi B,Q’ and let L 1 be any line of Q through x 1. Evidently,
L 1 meets n’ in a unique point y. Let L2 be any line of n’ such that LI, L2 and
their points in n’ generate a polar space in Q with as point set a hyperbolic quadric
Q = Q3 . Take any point X2 # xl 1 on Li with X2 : y. The space V’ together
with the two points XI, X2 defines a unique (c + 1 )-dimensional subspace V over
F, which contains XI, X2 and y and hence all points of n on L 1. Also, V contains
all points of Q on L2 and all points of the line of Q’ containing y and concurrent
with L2. Similarly as in (c), one now shows that Q+ is completely contained in a
3-dimensional subspace over F which clearly belongs to V.

(g) We now show that all points of n belong to V. Let z be any point of n B n’.
First suppose that z is not collinear with y. Consider a line Ml on n’ through y
and such that L and MI are not contained in a plane of n. Let L3 be the unique
line of Q through z meeting Mi in a point of Q. Then clearly L 1 and L3 define
a hyperbolic quadric Q’ over IF on n. We show that the polar subspace of n with
point set Q’ has two different lines Mi and L2 in common with Q’. If we identify
the point set of Q with a quadric in some PG(c + 1, F), then the 3-space of Q’
and the hyperplane defined by Q have a plane ( in common, which intersects Q’ 
in two distinct lines. Hence Q has two different lines MI and L2 in common with
Q’. Interchanging roles of L2 and L’, we now see that z also belongs to the space
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V. Now suppose that the point z of S2 B n’, z =1 y, is collinear with y. Let L3 and
L4, with L3 =1 yz =1 L4, be two distinct lines of Q through z for which yL3 and
yL4 are not planes of Q. By the foregoing all points of L* B tzl and L* B tzl
belong to V. Hence also the intersection of L3 and L4, that is z, belongs to V. So
we conclude that each of the points of n belongs to V, and consequently n is fully
embedded in the space V over F.

(h) Applying consecutively the previous paragraphs for c = 3, 4, ... , d - 1, we
finally obtain that r is fully embedded in some PG(d, IF) .

(i) Now let F be a non-singular hermitian polar space sub-weakly embedded in
PG(d, K), d &#x3E;, 3, and suppose that the degree is 2. On the non-singular hermitian
variety H from which F arises we consider a non-singular hermitian variety H’,
where H’ generates a 3-dimensional space. The corresponding point set on F will
be denoted by 1t and the corresponding polar subspace of F by Q. Let L, M
be two non-intersecting lines of Q. In PG(d, K), the lines L and M generate a
3-dimensional subspace U = PG(3, K), which contains all points of H (Q is
generated by L, M and their points in Q). Now consider two points x and y in H
which are not collinear in H. Let Hx and Hy be the set of points of H collinear in H
with x and y respectively. Clearly neither Hx nor Hy can be contained in a line of
U. Also, by condition (WE2), neither Hx nor 1ty generates U. Hence Hx and Hy
define unique planes Ux and Uy respectively. These planes meet in a unique line N
of U. Clearly N contains all points ofH collinear in Q with both x and y. Assume
that z is any point of F on N. Further, let u, v e N n H, u # v. Then z is collinear
in F with all points of u1 n v1. Let u’, v’, z’ be the points of H which correspond
to u, v, z respectively. As z’ is collinear in 1t with all points of u’-L n v, 1 , it belongs
to H n u’v’ = H’ n u’v’. Hence z belongs to H n uv. It follows that the set of all
points of r on N corresponds to the point set H n ulvl lil n u’v’. As N meets
r in more than 2 points, we are in contradiction with 6 = 2.

(j ) Finally let r be a non-singular symplectic polar space sub-weakly embedded
in PG( d, K), d &#x3E; 3. Let F’ be the ground field over which the symplectic polarity
 from which F arises is defined.

If the characteristic of F’ is not two, then a similar proof as for the hermitian
case leads to a contradiction; here the secant line N will contain IJF’I + 1 points
(note that the secant lines of F correspond (bijectively) to the non-isotropic lines
of the symplectic polarity ().

If the characteristic of F’ is two, then IF’ is perfect, hence F is also orthogonal.
Now it follows from (a)-(h) that r is fully embedded in some PG( d, IF) . D

The next lemma is a result similar to Theorem 1 for projective spaces. A sub-
n-space of a projective space PG(n, K) is any space PG(n, JF), JF a subfield of

4 obtained from PG( n, K) by restricting coordinates to F (with respect to some
coordinatization). Note that, for many fields K and positive integers n, there exist
subsets S of the point set of PG( n, K) such that the linear space induced in S
by the lines of PG( n, K) is the point-line space of a PG( m, F) with m &#x3E; n. The
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following result gives a necessary and sufficient condition for such a structure to be
a sub-n-space. These conditions are basically (WE1 ) and some analogue of (WE2).

LEMMA 6 Let S be a generating set of points in the projective space PG(n, K),
K a skewfield and let L be the collection of all intersections of size &#x3E; 1 of S
with lines of PG(n, K). Suppose (S, £) is the point-line space of some projective
space PG( m, IF), for some skewfield IF and some positive integer m. Then IF is a
subfield of 4 m = n and S and L are the point set and line set respectively of
some sub-n-space PG(n, IF) of PG(n, K) if and only if there exists a dual basis of
hyperplanes in PG(m, IF) such that each element H of that basis is contained in a
hyperplane H’ ofPG(n,K) with H’ n S = H.

Proof It is clear that the given condition is necessary. Now we show that it is also
sufficient. If m + 1 points of S generate PG(m, IF), then by the condition that lines
of PG(m, IF) are line intersections of PG(n, K) with S, these m + 1 points must also
span PG(n, K) (otherwise S is contained in some proper subspace of PG(n, K)).
Hence m &#x3E; n. Now let {Hi: i = 0, 1, ... , m - 1, m} be a collection of hyperplanes
of PG(rra, IF) meeting the requirements of the lemma. Put Si = Ho n Hl n ... n Hi,
i = 0, 1,..., m. Suppose that Sj generates the same space as Sj+1 in PG(n, K) for
some j, 0  j , m - 1. Let H2 be contained in the hyperplane Hi (not necessarily
unique at this point) of PG(n, K), i = 0, 1,..., m. If x is a point of Sj not lying
in Sj+l (x exists by the assumptions on Hi), then in PG(n, K) z is not generated
by the points of Hj+l, since Hj+l meets S precisely in Hj+l. But Sj+i 9 Hj+l,
hence in PG(n, K) z is not in the space generated by Sj+l, a contradiction. So Sj
generates a space in PG(n, K) which is strictly larger than Sj+,. That means that
we have a chain ofm+1 subspaces of PG(n, K) consecutively properly contained
in each other and all contained in Hi ; hence n  m. We conclude that n = m.
Now if we choose a basis of PG(n, IF) (this is also a basis of PG(n, K)), then

is is clear that the corresponding coordinatization of PG(n, IF) is the restriction of
the coordinatization of PG(n, K) to the field F. The result follows. Il

LEMMA 7 Let r be a non-singular polar space of rank at least 3 arising from
a quadric, a symplectic polarity or a hermitian variety, and let r be sub-weakly
embedded of degree b &#x3E; 2 in the projective space PG(d, K). Then r is fully
embedded in some subspace PG(d,F) of PG(d, K), for some subfield IF of K

Proof Let IF’ be the field underlying r.
(1) First, let the characteristic of IF’ be odd and let r be a non-singular sym-

plectic polar space. By (j) in the proof of Lemma 5, secant lines of F correspond
(bijectively) with non-isotropic lines of the symplectic polarity ( from which
F arises. Now the space S2 with point set S, the point set of r, and line set
{L* : L is a line of F} U {S fl S : S is the point set in PG(d, K) of a secant line of
FI is a projective space. Every hyperplane H in that projective space S2 is the set
of points of S collinear in r with some fixed point x of S. It is easy to see that, as
S is a generating set of PG(d, K), the hyperplane H of S2 generates a hyperplane
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H’ of PG(d, K). Now by (WE2) the assumptions of Lemma 6 are satisfied and the
result follows.

Next, assume that the characteristic of F’ is two and let r be a non-singular
symplectic polar space. Let ( be again the symplectic polarity from which F arises.
If ( is defined in PG( d’, Fl), then we consider a subspace PG(3, F’) of PG( d’, IF’ )
in which ( induces a non-singular symplectic polarity q. The polar space defined
by ( is F’, and the polar space defined by q is n’. With n’ corresponds the polar
subspace Q of F. Let L, M be two non-intersecting lines of Q and let L’, M’ be
the corresponding lines of Q’. Let x be a point of Q on L and y a point of Q on M,
where x and y are not collinear in H. The points of PG(3, e) which correspond to
x, y are denoted by x’, y’ respectively. As b &#x3E; 2 the line xy contains a third point z
of F. As, by (WE2), z is collinear in r to all points of xl. n yl. , the corresponding
point z’ of PG(d’, F’) is collinear in F’ to all points of x’-L n y,l.. Hence z’ belongs
to the line x’y’, so belongs to Q’. It follows that z belongs to Q. As Q’ is generated
by z’, L’, M’ and all points of L’ and M’, also Q is generated by z, L, M and all
points of L and M. Hence S2 is contained in a subspace PG(3, K) of PG( d, K).
Then a similar argument as in (i) of Lemma 5 shows that the secant lines of F
correspond (bijectively) to the non-isotropic lines of (. Now, analogously as in the
odd characteristic case, the result follows.

(2) Now suppose that r is of orthogonal type. Let F’ be the image of a natural full
embedding of r in a projective space PG(d’, F’) where the point set of F’ is a non-
degenerate quadric Q’ of PG( d’, F’) . Denote by x’ the element of F’ corresponding
to any element x of F. Let M be a secant line in PG(d, K). Let p 1, P2, p3 be three
points of F on M. Consider a point r of r collinear with both pi and p2. By
(WE2) all points of r on M are collinear with r. If the lines r’pl, r’p2, r’p3 lie in
a plane of PG( d’, e), then this must be a plane of FI and hence M is a line of
F, a contradiction. Consequently r’, p’, p’, p’ generate a 3-dimensional subspace
PG(3, e) of PG( d’, F). Let PG(4, F’) 2 PG(3, F’) intersect Q’ in a non-singular
quadric Q’1. Suppose the characteristic of F’ is not 2. Then there is a unique second
point s’ of Q 1 collinear with p’, p’2, p’3. So s is collinear with P1, P2, P3. Since s and
r are not collinear in F, s is not in the plane rp1 p2p3 by (WE2). Let N be a line
of F concurrent with rpl and sp2 in F, but not incident with r or s. The line R
of F through p3 meeting N* lies in the 3-dimensional space srplp2p3. By (WE2)
R is in the plane p3rs. Let w be the unique point of R* collinear with P1; then w
is also collinear with p2 (by (WE2)). Clearly w’ E Q 1, a contradiction. Hence the
characteristic of e is equal to 2.

Let p’, p, P; and r’ be as above, and let p’1p’2p’3 n Q’ = C’; further let Q [ be as
above. Let s’ 54 r’ be a point of Q 1 collinear with p’, p’ (s’ exists since Q’ defines
itself a polar space). By (WE2), s’ is also collinear with p3. As in the previous
paragraph, we construct the line R and the point w. Let V’ be a line on Q’ through
w’, not containing p’, p2. There is a line L’ meeting r’pi , s’p’ and V’, thus implying
that V belongs to the space rSWPlP2 = rspl p2. By (WE2), V is contained in the
plane WPIP2. Let W be a line of r containing r and meeting V*. Then W is in the
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plane rpl p2 wpip2, hence V n W is on M. So M contains all the points x such
that x’ is on the conic C’. Note that the kernel k’ of C’ coincides with the kemel of

Q 1 (as all tangents k’r’, k’ s’ and k’p’ with p’ e C’ generate the 4-space of Q 1 ). We
now show that for any point x of r on M, the point x’ belongs to C’. By (WE2),
each point ofF on M lies in ( {Pl, P2}1.)1.. But (fp,l, P,21 -L) -L is the intersection of
Q’ with either a line (and this happens if and only if d’ is odd) or a plane x (and
this happens if and only if d’ is even) containing the kernel k’ of Q’. The first case
contradicts 6 &#x3E; 2, hence only the latter case occurs. But clearly x must meet Q’ in
C’ and our claim follows.

Note that the argument of the previous paragraph also shows that all points of
every conic on Q’ lying in a plane which contains the kernel k’ of Q’ correspond
to the points of intersection of r with some secant line M. Also, every two non-
collinear points of Q’ lie in such a unique plane. Projecting F’ from the kemel k’
onto some hyperplane PG( d’ - 1, e) not containing k’, we obtain an embedding
of F’ into PG( d’ -1, IF’ ) such that secant lines of r correspond with secant lines of
the image r" of F’ in PG( d’ - 1, F’ ) . Note that if F’ is perfect, in particular when
IF’ is finite, then F" is a non-singular symplectic space and the result follows from
the first part of the proof.

(3) Remark that in (1) and (2) the proof does not depend on the rank of r, as
long as it is at least 2.

From now on we use the fact that the rank of the orthogonal polar space F is at
least 3. By the last part of (2) we may assume that the field IF’ is not perfect. As in
paragraph (a) of the proof of Lemma 5, one shows that any set L*, with L a line of
F, is a subline of L over a subfield IF of K which is independent of L (and clearly IF
is isomorphic to F’). We now proceed in the same style as in the proof of Lemma
5, adapting the arguments to our present case b &#x3E; 2.

We denote by x" the element of F" in PG( d’ - 1, e) corresponding to any
element x ofF in PG( d, K). Let L and L2 be two lines ofF such that in PG( d’, IF’ )
L 1 and L’ span a 3-space which intersects Q’ in a non-singular quadric Q +. Let Q’
be the intersection of Q’ with the 4-dimensional subspace of PG(d’, F’) generated
by L’, L’ and the kemel k’ of Q’; note that Q 1 is non-singular. Let Q be the
polar subspace of r which corresponds with the quadric Q+. As in paragraphs
(b) and (c) of the proof of Lemma 5, one shows that n is fully embedded in a
unique 3-dimensional subspace V over F of the 3-dimensional subspace U (over
1K) of PG( d, K) generated by L1 1 and L2. Let V" be the 3-dimensional subspace
of PG( d’ - 1, F’ ) generated by L 1 and L" (where L 1 and L" are the respective
projections of L 1 and L2). Let x" be any point of r" in V". Then x’ E Q’ and
since Q’1 is non-singular, x is not collinear with all points of Li , i = 1, 2. Suppose
X’ does not lie on Q+ and let y be the unique point on L1 1 collinear with x in r.
Let XI, x 2 be two other points of F on L1. Let L be the line of r containing y and
concurrent with L2. The lines x’ y’, L’ and L 1 define a cone on Q i and consequently
there is a unique conic Ci on that cone with kemel k’ and containing x’ and xz,
i = 1, 2. These conics correspond with the respective secant lines M1 and M2 of
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F. Hence Mi, i = 1, 2, contains Xi and another point y2 of F on L. But xt, yi C V,
hence Mi defines a line of V, i = 1, 2. Since x is the intersection of Mi and M2, it
belongs to V. So we obtain a full embedding of the polar subspace of r determined
by Qi.

Now let z be any other point of F contained in U. If z belongs to V then there
is a unique line M in V meeting both L and L2 and containing z. The extension
of M to K is a secant line of f and hence it corresponds with a conic on Q 1; hence
z’ belongs to Q i , a contradiction.

Suppose now z e U B V. Considering the polar subspace of F generated by L1,
L2 and their points in F, one shows as in paragraph (d) of the proof of Lemma 5
that z E V, a contradiction. Hence the only points x ofF in U satisfy x’ e Q  .

As in paragraphs (e), (f), (g) and (h) of the proof of Lemma 5 we use an
inductive argument. The assumption is that any (2c - 1 )-dimensional non-singular
orthogonal subspace F‘ 1 of F, whose corresponding subspace Vl in PG(d’, F’)
contains k’, is fully embedded in a (2c-1 )-dimensional projective subspace Vi over
IF of PG(d, K), 2  c  !!. We want to show that every (2c + 1 )-dimensional non-
singular orthogonal subspace F2 of F, whose corresponding subspace of PG( d’, IF’ )
contains k’, is fully embedded in a (2c + 1 )-dimensional projective subspace over
IF of PG(d, K).

Let F2 be a (2c + 1 )-dimensional non-singular subspace of F, whose corre-
sponding subspace V2’ of PG( d’, F’) contains k’, 2  c  f. Further, let FI 1 be a
(2c - 1 )-dimensional non-singular subspace of F2, whose point set corresponds to
the set of all points of F’ 2 collinear with two given non-collinear points u’ and v’
of F. Then the subspace Vl of PG( d’, IF’ ) containing F, also contains the kemel
k’. Hence Fi is fully embedded in a (2c - 1)-dimensional projective subspace VI
over IF of PG( d, K).

First, suppose there is a point x of F2 B Fi with the property that the subspace V3
of PG( d’, IF’ ) generated by Vl and x’ meets the point set of P’ 2 in a non-degenerate
quadric Q’, i.e. the singular point of Q 3 lies in a proper extension of VJ over some
extension field Fi of IF, but not in V3 itself. Let Ul be the extension of VI over K.
We first show that UI does not contain any point of F3 B FI, where F3 is the polar
subspace of r which corresponds to Q 3 . Let the point z of F3 B FI belong to Ul.
Since F3 is generated by Fi and z, all points of r3 belong to Ul . All points of F 1
are collinear with u. Since the point set of r 1 generates Ul, by (WE2) all points
of F3 are collinear with u. As F3 is non-degenerate the point u does not belong
to F3, and so the set of all points of F3 collinear with u is just the point set of
FI. This yields a contradiction. Consequently no point of F3 B FI 1 is contained in

Ul . Similarly to parts (f) and (g) of the proof of Lemma 5 we can now show that
F3 is fully embedded in a subspace PG(2c, IF) of PG(d, K). Let PG(2c, K) be the
extension of PG(2c, F) over K Assume, by way of contradiction, that PG(2c, K)
contains a point r of r2 B F3. Since F2 is generated by F3 and r, all points of F2
belong to PG(2c, K). Hence u belongs to PG(2c, K). By (WE2) the points u and
v belong to the (2c - 1)-dimensional space Ul. Since F2 is generated by FI, u
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and v, the polar space F2 belongs to Ul. Hence F3 belongs to Ul , a contradiction.
Consequently no point of r2 B F3 is contained in PG(2c, K). Similarly to parts
(f) and (g) of the proof of Lemma 5 we now show that F2 is fully embedded in a
subspace PG(2c + 1, IF) of PG(d, K).

Next, suppose that for each point x of F2 B F‘ 1 the subspace V; of PG(d’, F’)
generated by VI’ and x’ meets the point set of P’ in a degenerate quadric Q’, that
is, the singular point y’ of Q’ 3 belongs to V3. The set of all singular points y’ is a
non-singular conic C’ with kemel k’. Let L’ be any line through k’ in the plane 1r’
of C’. Then the (2c + 1 )-dimensional space generated by Yl and L’ intersects the
point set of F’ 2 in a degenerate quadric with singular point on C’ and L’. It follows
that each line L’ in 1r’ through k’ contains a point of C’. Consequently the field IF’
is perfect, a contradiction.

As in (h) of the proof of Lemma 5, induction now shows that d = d’ - 1 and
that F is fully embedded in a subspace PG(d, IF) of PG(d, K).

(4) Finally suppose that f is a non-singular unitary polar space of rank at least
3 arising from some hermitian variety H’ = H(d’, IF’, o,) in PG( d’, IF’ ) with a an
involutory field automorphism of IF’ . Again we can copy part (a) of the proof of
Lemma 5. As in (b) of that proof we can choose two lines L  and L2 of F generating
a 3-space U of PG(d, K). In F the lines L1 and L2 and their points generate a non-
singular polar space n which corresponds to a hermitian surface H; (of a 3-space)
on H’. Now L1 and L2 (but not all their points) are contained in a polar subspace
Qo corresponding to a symplectic space W(3, IF’a) in a 3-dimensional subspace
PG(3, F) ) of PG( d’, IF’ ) over the field F’ , which consists of all elements of IF’
fixed by a. By part (1) of this proof we know that there exists a subfield IFa of K
isomorphic to e, and a 3-dimensional subspace Va of PG( d, K) over Fi such that
Qo is fully embedded in Va. We also know that for any line L of F the set L* is a
projective subline of L in PG( d, K) over some field F, which is independent of L.
Evidently IF contains Fi. Let V be the extension of Va over F. Let L be a line of
Qo and let x be a point on L belonging to Q B Qo. Then clearly x lies in V. We will
show that every point x of Q lies on a line of Qo.

Let x be an arbitrary point of n B Ho and let x’ be the corresponding point of
H;. Since PG(3, F) ) is a Baer subspace of PG(3, e), there is a unique line L’ of
PG(3, IF’ ) containing x’. If L’ were not a line of W(3, e,), then it would meet H;
in a subline of L’ over F’ , hence x’ would be a point of PG(3, e,), a contradiction.
So L’ is a line of li’ 3 (altematively, this can be easily seen by considering the dual
generalized quadrangle). The corresponding line L of Q is incident with x and
belongs to Ho. Hence Q is fully embedded in V and U is the extension of V over
K.

Now we show that no other point of F belongs to U. Suppose, by way of
contradiction, that the point z of F lies in U but is not contained in Q. Let z’ be
the corresponding point of H’. If ?r’ is the set of all points of H; collinear with z’,
then either ’H’ 3 = T’, or T’ is a non-singular hermitian curve, or T’ is a singular
hermitian curve. Let T be the corresponding point set of n. First, let U’ 3 = T’.
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Noticing that for every point y of f2, the space generated by y 1 in PG( d, K) meets
U in a plane (by axiom (WE2)), we see that z must lie in every plane containing
two intersecting lines of n. Hence the extensions over K of all tangent planes of
the unitary polar space Q (the point set of Q is a hermitian variety of V) have a
common point, clearly a contradiction. Hence -C3 T’. Then, by (WE2), T and z
are contained in a common plane PG(2, K). Assume that T’ is a singular hermitian
curve, with singular point u’. Let r’ e l’ B f u’l. As r is collinear with u and z
in F, by (WE2) it is collinear in F with all points of T, clearly a contradiction.
Finally, let 7’ be a non-singular hermitian curve. Let s be any point of T, and let
Ml , M2 be any two distinct lines of Q through s. By (WE2) the lines Ml, M2, zs
are contained in a common plane, which is the extension over K of the tangent
plane of the unitary polar space Q at s. Hence z belongs to the extensions of all
tangent planes of Q at points of T, so z belongs to V. It follows that all tangent
lines of the hermitian curve T concur at z, a contradiction. We conclude that the

only points of F in U are the points of Q.
As in paragraphs (e), (f), (g) and (h) of the proof of Lemma 5 (and as in (3) of

the present proof) we use an inductive argument. Let r be the polar subspace of
F arising from a non-degenerate hermitian subvariety U’ of H’ containing lines,
and obtained from H’ by intersecting it with a c-dimensional subspace Wl of
PG(d’, F’), 3  c  d’. Suppose that r 1 is fully embedded in a c-dimensional
subspace VI over F of PG( d, K). Let F2 be the polar subspace of F arising from
a non-degenerate hermitian subvariety li’ 2 of 11’ obtained from H’ by intersecting
it with a (c + 1 )-dimensional subspace W2 of PG( d’, F) containing Wl’. Then
we will show that r2 is fully embedded in some (c + 1 )-dimensional subspace
Y2 over IF of PG( d, K). Let x be a point of F2 ) Fi . Let Ul 1 be the extension of
VI over K. Suppose by way of contradiction that x belongs to Ul. The points of
Fi 1 collinear with x in F2 form a point set H3 corresponding to a non-singular
hermitian subvariety U’ of H obtained by intersecting U’ with a hyperplane of
Wl’. By (WE2), x must belong to the extension over K of every hyperplane of VI
tangent to r at a point ofH3. Also by (WE2), x and H3 are contained in a common
hyperplane W3 of UI. As the polar space with point set U’ is generated by H and
any point of li’ B li’, also r 1 is generated by U3 and any point of F‘ not in H3.
Hence 1t3 generates a hyperplane R3 of Yl. Clearly W3 is the extension over K of
the hyperplane R3. It follows that the extensions over K of the tangent hyperplanes
of FI at points of H3 intersect in a unique point which belongs to VI B R3. Hence
x e W3, a contradiction. Consequently no point of r2 B rl belongs to Ul. Let L be
any line of F2 ) Fi ; then L* defines a projective subline over IF and hence there is
a unique (c + 1 )-dimensional subspace V2 over 1F of PG(d, K) containing VI and
all elements of L * . We now show that all points of F2 are contained in V2. Let x be
any point of F2- Clearly we may assume that x does not belong to Fi nor to L*.

In the sequel, we again denote the corresponding element in PG( d’, e) of an
element e ofF by e’.
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First suppose that x is collinear in r2 with a point y E L* which does not belong
to rI. All points of the line x’y’ belong to li’ 2 and hence there is a unique point z’
of x’y’ in U’. Let w be the unique point of r on L *. The line w z is either a line of
r or a secant line. In the first case the points of r 2 in the plane x w z of PG( d, K)
form a projective subplane over F sharing all points of at least two lines with V2.
Hence all points of that subplane belong to Y2 and so does x. In the second case let
u be any point of Fi on wz, w :1 u :1 z (this is possible by the assumption 6 &#x3E; 2).
By Proposition 4 of [5] the line x u meets L in a point of r. Hence both x u and xz
are lines of V2 and the result follows.
Now suppose that x is not collinear in r2 with an element of L* not belonging

to I‘ 1. By the Buekenhout-Shult axiom x is collinear in r2 with the unique point
w of L* in Fi. Let y e L *, y :1 w. It is easy to see that there is at most one point
on the line y’w’ collinear in li’ to all points of li’ which are collinear to x’ (since
all such points belong to a secant line of 1i). So there is a point yl  w on L*
and a point r of Fi collinear with y, in r2, but not collinear with x in F2. By
the Buekenhout-Shult axiom, there exists a unique line M of f2 incident with x
and containing a point s of 12 on the line ryl. By assumption s # r, so s does
not belong to Fi. By the previous paragraph, all points of r on ry, belong to V2.
Interchanging the roles of r y1 and L, we now see that x belongs to V2. We conclude
that r2 is fully embedded in a (c + 1 )-dimensional subspace over F of PG(d, K).
Applying this for c = 3, 4,..., d’ - 1, we finally obtain that r is fully embedded
in some PG( d’, F) from which immediately follows that d’ = d.
This completes the proof of the lemma. D

The previous lemmas prove Theorem 1. 0

Remarks 1. When r arises from a non-degenerate but singular quadric (and that
can only happen if the characteristic of the ground field F’ is equal to 2), Theorem
1 is not valid. For example consider in PG(7, --’). where F’ is a non-perfect field
with characteristic 2, the quadric Q with equation

where a e e is a non-square. Let K be the algebraic closure of e and let PG(7, K)
be the corresponding extension of PG(7, IF’). The point x(o, 0, va, 1, 0, 0,0, ) is
the unique singular point of Q. If we project Q from x onto a hyperplane PG(6, K)
of PG(7, K) which does not contain x, then we obtain a weakly embedded polar
space which is not fully embedded in any subspace PG(6, F), for any subfield F of
K. In a forthcoming paper, we will classify sub-weakly embedded singular polar
spaces, degenerate or not, arising from quadrics, symplectic polarities or hermitian
varieties.

2. When r has b = 2 and arises from a non-singular symplectic polar space of
rank at least three over a non-perfect field of characteristic two, then Theorem 1 is
not valid. We give an example. Let K be a field of characteristic two for which the
subfield F of squares is not perfect. Then also K is not perfect. Now consider in
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PG(6, K) the set S of points (xo, xl, ... , x6) with xo, z i , ... , xs E IF, X6 e K, and
lying on the quadric Q with equation

Then S, provided with lines and planes induced by Q, is a polar space r isomorphic
to the non-singular symplectic polar space W (5, JF) in PG(5,F) by projecting S
from (o, 0, 0, 0, o, o,1 ) into the subspace U with equation X6 = 0 over IF. Clearly
F is sub-weakly embedded in PG( 6, K). Let ei, 0  i  5, be the point of PG( 6, K)
with all coordinates 0 except the ( i + 1 )th coordinate, which is equal to 1. Let e
be the point all coordinates of which are equal to 1 and let eo, be the point with
coordinates ( 1,1, 0, 0, 0, 0, 0) . Then it is easy to see that the set V of points of S
on the lines eiei+1, i e (0, 1,..., 4}, on eoe5 and on eeol generates the subspace
PG(6, F) of PG(6, K) consisting of all points with coordinates in F. Hence, if
S were fully embedded in a subspace of PG(6, K) over a subfield of 4 then this
subspace would be PG(6, IF). As S contains the point (0, 0, 1, 0, 0, a2, a), a E KB F,
which does not belong to PG(6, F), the polar space r is not fully embedded in a
subspace of PG(6, K).

3. Proof of Theorem 2

(i) First suppose that the non-degenerate quadric Q does not contain lines. Since
by assumption the points of Q span PG(d, IF), we may assume that ei = (0,..., 0,
1, 0,..., 0), where the 1 is in the ith position, lies on Q for every i. The plane ei e3 ek,
1  1  j  k , d + 1, meets Q in a non-singular non-empty conic. Assume that
the coefficient of XiXm in a fixed equation for Q over JF is aim = ami. Let the
quadric Q’ of PG( d, K), with K an extension of IF and PG( d, K) the corresponding
extension of PG( d, F), contain Q. The coefficient of XXm in a fixed equation for
Q’ over K is denoted by a’m = a’ M£ - If 1 IF 4, then, eithci eiejek n Q’ is a non-
singular non-empty conic or the plane eiejek itself. As a non-singular non-empty
conic is uniquely defined by any five of its points, we have aim = cjç, j, kj aim with
Ê, m e {i, j, k} and C{i,j,k} e K (as eiejek n Q is non-singular we have aim =1 0).
By fixing i and j we see that C{i,j,k} == C{i,j,k’}’ for every k, k’ and now it is easy to
see that cjç, j, kj is a constant c; it is clear that C =1 0, whence the result for ]F] # 4.
Suppose now = 3. As Q does not contain lines we have d E {2, 3}. For d = 2,
there are indeed distinct conics in PG(2,K), where K is a field of characteristic
3 with ]K] &#x3E; 3, containing the four points of a conic in a subplane isomorphic
with PG(2,3), and the same remark holds for IJFI = 2 and d = 2. If d = 3 and
IIFI = 3, then a direct and straightforward computation shows that the ten points of
Q are on a unique quadric in every extension PG(3, K). For JIFI = 2 and d = 3, the
five points of Q are contained in several non-singular quadrics over every proper
extension of F. This completes the case where Q does not contain lines.
Now suppose that Q contains lines. Let Q’ be a quadric in PG(d, K) containing

Q, with K an extension of F and PG( d, K) the corresponding extension of PG( d, IF) .
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Again we can assume that ei E Q for all i. Let aij = aji respectively aij = a§ç
be the coefficient of XiXj in the equation of Q respectively Q’. The tangent
hyperplane Ui of Q at ei is spanned by all lines through ei contained in Q. If ei is
not singular for Q’, then also the tangent hyperplane Ui’ of Q’ at ei is spanned by all
lines through ei contained in Q’ ; in such a case the hyperplane Ui is necessarily a
subhyperplane of Uf. The equation of Ui is ¿j aij Xj = 0 (note that aii = aii = 0
for all i). If ei is not singular for Q’, then the equation of Uf is Ej aijXj = 0;
if ei is singular for Q’, then a- = 0 for all j . From the foregoing it follows that
aij = Ciaij for all j, with ci e K. Hence if aij = 0, then also aij = 0. Now
consider 1 , i  j  d + 1 and 1  k  1  d + 1 with {i,j} n {k,f} == 0 and
suppose that aij =1 0 # akl. From the preceding it immediately follows that if aik,
ail, ajk and ajl are not all zero, then

On the other hand, if aik = ail = ajk = ajl = 0, then the same equal-
ity follows from considering the tangent hyperplane of Q at the point eik =
(0,..., 0,1,0,..., 0,1,0,..., 0), with the 1 in the ith and the kth position, from
considering the tangent hyperplane of Q’ at eik if this point is not singular for Q’
(if this point is singular for Q’, then aij == akl = 0), and from considering the coef-
ficients of Xj and Xl in the equations of these hyperplanes. Now it immediately
follows that Q’ is uniquely determined by Q.

(ii) The proof is similar to the last part of (i) and in fact it can be simplified a
great deal because we can immediately use standard equations.

(iii) First suppose that the non-singular non-empty hermitian variety H does
not contain lines. Since the points of H span PG(d, IF), d &#x3E;, 2, we may assume that
e, = (0, ... , 0,1,0,..., 0), where the 1 is in the ith position, lies on H for every i.
The plane eiejek, 1 , i  j  k  d + 1, meets H in a non-singular non-empty
hermitian curve C. Assume that the coefficient of X£X’ in a fixed equation for
H over IF is alm. Let K be a field containing IF admitting a K-involution T the
restriction of which to IF is a, let PG(d,K) be the corresponding extension of
PG( d, IF), and let the hermitian variety H’ of PG( d, K) contain H. The coefficient
of XlX:n in a fixed equation for H’ over K is denoted by a’m. The intersection of C
with the line eiei is determined by the equation aijXiXj’ + ajiXjXi’ = 0 (as C is
non-singular we have aij -# 0). For each point of that intersection also the equation
a XiXj- + ajiXjX[ = 0 is satisfied. Let (0,...,0,1,0,...,0, U, 0,..., 0) be a
point of C n eiej with u # 0. Then aij ul + aji u = aijuU + ajiu = 0. Hence
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Let us now consider a point (0,..., 0,1,0,..., 0, U, 0,..., 0, v, 0, ... , 0) of C n
eiejek with the u as above and v # 0. Then aikvO" + akiv + ajkuva + akj vua =
a)*va + a[jv + a"*uv + a[ .vu = 0. Asaikv akiv ajkuv akjvu - . As

we have

with b, c E K. Assume, by way of contradiction, that

Then it readily follows that aijajkaki + ajiaikakj = 0. As C is non-singular,
we have aijajkaki + ajçaçkakj ::j:. 0, a contradiction. Hence aikvl + akiv and

ajkUVa + akjVUa are not both zero, so that b = c. Hence

Now it readily follows that H’ is uniquely determined by H.
Now suppose that H contains lines. If the line eiej, i 0 j, does not belong to

H, then as in the first part of (iii) we obtain

If the line eiej, i  j, belongs to H, then aij aji = a’ij = a’ji = 0. Now we
proceed as in the second part of the proof of (i). D

Remark In the finite case, any GF( q2 ) contains a unique involution. But in the
infinite case, examples arise where distinct choices for T can be made. For instance,
one can extend the unique involution z - xq of GF(q2), q odd, to the involutions
ait’ i2,qt’ and E ait’ aq(-t)’ of GF(q2)(t).
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