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Abstract. The classification is obtained by expanding the ideas pertaining to the so-called last possible
place of unitarity as well as a certain diagrammatic presentation of On . In this approach it is a key
step to establish that in the singular case, certain maximal submodules are generated by a single
highest weight vector. Using a duality between highest weight modules and holomorphically induced
modules previously established, these ideas can be further extended to also give a direct classification
of the annihilators. In particular, at no place do we use induction from lower rank.
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1. Introduction

That spaces of holomorphic sections over a hermitian symmetric space D of the
non-compact type could carry unitary representations of the group G of holo-
morphic transformations of D (or a suitable covering group G thereof) was first
discovered and utilized by Harish-Chandra in his work on the holomorphic discrete
series [11].

The idea of the analytic continuation of the holomorphic discrete series was
investigated in [22] and reached its first peak in two independent studies in the
mid 1970s of the case of holomorphic functions on D. We refer to this case as the
scalar case. It seems to be generally agreed upon that N. Wallach [28] with his
algebraic approach was a little earlier than the analytic approach of H. Rossi and
M. Vergne [25], and (maybe) for this reason, the discrete part of the set of unitary
representations for this situation became known as the Wallach set. Nevertheless,
the description of the most singular spaces 1Íi as Fourier-Laplace transforms - in
the unbounded realization Du of D - of distributions supported by subsets Oi of the
boundary of a certain cone f2 used in the definition of Du, as fumished by the Rossi
and Vergne, has for the current investigation been the most important result. Indeed,
the spaces Oi are orbits under a certain subgroup of G and are as such immediately
recognizable as open subsets of the real points of algebraic varieties. Specifically, in
this realization, the space of holomorphic constant coefficient differential operators
that annihilate the representation connected with the orbit Oi is equivalent, via the
Fourier-Laplace transformation, to the prime ideal defined by Oi.

To make our presentation as self-contained as possible, we also present our own
approach to these representations. For use below, define W((0, 03BBsc2)’) to be the most
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singular non-trivial unitary representation in the scalar case. This representation is
annihilated by a prime ideal generated by some second order differential operators.

Let us make some more remarks about the history of the subject: For reasons of
physics, the conformal group SU(2, 2) early received special attention ([13], see
also [23] and [26]) but after that, a case-by-case hunt for the full set of unitary
holomorphic representations (or, equivalently, unitarizable highest weight mod-
ules) took place for some years: SU(p, q) : [ 15], Mp(N, R): [16] (whereby the first
proof of the Kashiwara-Vergne Conjecture ([21]) was completed), and O( n, 2): [10]
(see also [24]). Finally, the classification was completed in [17] and, independently,
in [8].

In the last few years there has been a renewed interest in certain geometrical
aspects of the representation theory connected with these spaces, see e.g. [5], [6],
[9], [20], and this has then provoked the present article which is the completion
of a project undertaken in connection with the classification problem but which
was never completed because one could get by without it. An example of what
we have in mind is the reported result of Davidson, Enright and Stanke [6] stating
that in the singular unitary case, a certain maximal submodule is generated by a
single highest weight vector. This is a result which we knew was very important
and which we, at least implicitly, established for the exceptional cases en route
to our classification ([17]). The reason is, provided of course it is proved without
using the classification, that it leads almost directly to the classification.

So-far, the approaches have either been case-by-case, or have used induction
on rank, or both. The approach we present here is, in our opinion, very different.
With it, almost all arguments are reduced to simple combinatorics on certain two-
dimensional diagrams. Of course, it must be mentioned that to obtain this reduction,
we have to rely on a celebrated theorem of Bernstein, Gelfand and Gelfand [1].
At this time it should also be said that even though our methods are algebraic
or combinatoric, the theorems we are proving either directly belong to harmonic
analysis or have immediate translations into some that do.

The method which is presented here begins by attacking the so-called ’last pos-
sible place of unitarity’. In fact, the method is successful exactly because there is
unitarity at that point. Before going into more technical details, it may be worth-
wile to quote the theorem which guided us into the philosophy of that method, and
which still, not the least on the intuitive level, is very important.

THEOREM 1.1. ([15]) Let W(03C4) be the unique irreducible submodule of a
holomorphically induced representation P(VT) corresponding to the irreducible
unitary representation T of a maximal compact subgroup. Suppose W (T) is unitary
and that the representation (necessarily unitary) W(03C4 + (0, À2C)’) obtained from
W(03C4) ~ W((0, 03BBsc2)’) by restricting the tensor product to the diagonal in D X D
is annihilated by a dth order differential operator. Then W(03C4) is annihilated by a
(d - 1 )th order differential operator.
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Since the spaces cannot be annihilated by Oth order operators, this explains why
a unitary representation which is annihilated by a 1 st order differential operator
must correspond, in an appropriate sense, to the ’last possible place of unitarity’.

Interpreted correctly the whole question of unitarity at the singular points, also
in the general ’vector-valued’ case, is equivalent to the study of the differential
operators that annihilate the representation. Indeed, by duality, the radical of the
canonical hermitian form (occasionally called the ’missing A"-typesB cf. [15]) can
be seen to determine the space of constant coefficient differential operators that
annihilate the representation spaces. As a consequence, once there is a differential
operator that annihilates the space, there is also a covariant differential operator
(cf. [18] and below).

The main results established here are the following:

2022 An intrinsic classification of the set of unitarizable highest weight modules.
e An explicit description of the annihilator Annp-(03C4) of W(T) in u(p-).
e In the singular case, the polar W(03C4)0 (the maximal submodule of the dual
module to P(V03C4)) is generated by a single highest weight vector. We prove
this explicitly in the case where 03B30 is on a wall (see below).

More generally denote, for f E W(T), the annihilator of f in ?f(p-) by
Annp-( f, 7). As noted by Davidson, Enright and Stanke [6] and Joseph [20], not
only are the spaces Annp- (T) prime ideals, but for all f E W(T), Annp-(f, 03C4) =
Annp- (T). These remarks can also easily be obtained from the explicit description
of the annihilators given in Theorem 7.3. In fact, the result of Rossi and Vergne
can be used in connection with the following proposition from Section 2 and the
classical Payley-Wiener Theorem by going to the unbounded realization and there
use that an appropriate group of translations, after complexification, is conjugate
to p-.

PROPOSITION 2.9. Let g be an element of a connected complex Lie group Gc
with Lie algebra g and set pg = Ad(g)(p-). Then,

However, we shall not pursue this issue any further since our interest here is to

give the mentioned intrinsic proofs of the above results, and since, as demonstrated
elegantly by Joseph [20], the general results can be obtained directly from these.

Instead we finish this introduction with a more detailed account of the content:
Section 2 contains the basic definitions of the modules, unitarity, annihilators,

etc., as well as some important results relating them. Section 3 describes our
approach to the result of Bernstein, Gelfand and Gelfand and in Section 4, spaces of
vector-valued polynomials are investigated. Also there, the important last possible
point of unitarity is defined, as is the corresponding positive non-compact root
10. In Section 5 we give the definitions and results leading to the presentation of
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the set of positive non-compact roots by 2-dimensional diagrams. For the sake
of completeness, proofs are included, but the reader is referred to [17], where
these results were first proved, for a list of all the diagrams. The usefulness of this
presentation is illustrated by two results that are used in the following sections.
Section 6 is devoted to translating results about homomorphisms between highest-
weight modules into propositions about possible configurations of non-compact
roots, in particular their relation to the -yo mentioned above. The unitarity of so-
called scalar modules is then settled. At the end of the section, special attention
is given to the case where 10 is on a wall of the diagram. Here some finer results
can be obtained by simple arguments because the possible configurations are very
few and easy. Moreover, these results tum out to be sufficient for our purposes.
Finally, the presentation culminates in Section 7 where the main results are stated
and proved.
We would like to express our thanks to the referee for valuable comments.

2. Background

2.1. MODULES

Let go be a simple Lie algebra over R and go = to + p0 a Cartan decomposition
of go. We assume that to has a non-empty center q; in this case q = R . ho for an
ho e q whose eigenvalues under the adjoint action on pô are +i. From the next
displayed equation on we adopt the convention that, unless otherwise indicated,
Gothic letters denote the complexified algebras. Thus, g denotes g8 and pô plainly
becomes p. Let

and

Let ël = [t, t] and let f)o be a maximal abelian subalgebra of to. Then t = ti Et) C · ho,
h = [h~ P1]~C·h0, (h~p1) is a Cartan subalgebra of el, and ~ is a Cartan subalgebra
of g. Moreover,

We let w dénote (-1) times the conjugation in g relative to the real form go of g
and let a == -w. Thus, go is the -1 eigenspace. We extend w to an anti-linear
anti-involution of u(g). The sets of compact and non-compact roots of g relative
to h are denoted 6c and 6n, respectively. A = 6c U 6n. Let S, denote a fixed
set of simple compact roots. We choose an ordering of A such that
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and set

and

Throughout, /3 denotes the unique simple non-compact root. For, E 6 let H03B3 be
the unique element of ih0 n [g03B3, g-03B3] for which 03B3(H03B3) = 2. Then for all ,1 in 6,

where (·,·) is the bilinear form on (h)* obtained from the Killing form of g. The
reflexion corresponding to y ~ 0394 is denoted by a,;

For a e 0394+n choose za e ga such that

and let z-a = zl. Essentially following the notation of [25] we let qr denote the
highest root. Then 03B3t e 0394+n, and H03B3t ~ [h ~ p1].

If Ao is a dominant integral weight of t, and if À e R we denote by 039B = (11.0, 03BB)
the linear functional on hC given by

Such a A determines an irreducible finite-dimensional U(t)-module which we,
for convenience, denote by VT, where T = TA is the corresponding representation
of the connected, simply connected Lie group Il with Lie algebra p. Further, let

denote the generalized Verma module of highest weight A, and let MA denote the
Verma module of which M(Vr) is a quotient.

In what follows we choose to represent our Hermitian symmetric space D
as a bounded domain in p-. Consider an (irreducible) finite-dimensional U(t)-
module VT. Through the process of holomorphic induction the space P(VT) of
V,-valued polynomials on p- becomes a U(g)-module consisting of t- (or -)
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finite vectors. We maintain the notation P(VT) for this module and let dUt denote
the corresponding representation of g. Explicitly, let

and

It follows from these formulas (especially the first) that the space

is contained in any invariant subspace. In particular, W ( T ) is irreducible.

Remark 2.1. Notice also that W(t) is a highest weight module in its own right.
However, the roles of p + and p- have been interchanged. But, this is just equivalent
to replacing ho with -h0, or, to ’forget’ the definitions of p±. This is both a very
useful and sometimes confusing phenomenon. In the determination of covariant
differential operators (defined below) it is quite powerful. See also [3], [4].

Let YT and VT1 be finite-dimensional (irreducible) U(t)-modules, and let D
be a constant coefficient holomorphic differential operator on .p- with values in
Hom(VT, VTt).

DEFINITION 2.2. D: P(V03C4) ~ P(VTt) is covariant iff

Let G denote the connected, simply connected Lie group with Lie algebra g. We
remark here that dUT is always the differential of a representation UT of G on the
space of holomorphic V,-valued functions on D. By holomorphy and analyticity,
Definition 2.2 is then equivalent to demanding that D should intertwine UT and
UT1.

Along with P(VT) we consider the space 03B5(VT’) of holomorphic constant coeffi-
cient differential operators on p - with values in the contragredient module YT = Vr’
to V.. For p e P(VT) and q ~ 03B5(VT’) let
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This bilinear pairing clearly places P(VT) and 0394(V03C4’) in duality and, as a result,
£(V-r/) becomes a U (g) -module. Specifically,

for x E g. The following result was stated in [18]. The proof is straightforward (cf.
the appendix to [12]).

PROPOSITION 2.3. As U(g)-modules,

From this it follows [18]:

PROPOSITION 2.4. A homomorphism cp: M (VTt) --+ M(V03C4) gives rise, by duality,
to a covariant differential operator D~: P(V03C4’) ~ P(V03C4’1), and conversely.

Proof. By Proposition 2.3, we may view ~ as a homomorphism from 03B5(V03C41) to
03B5(VT). VTt ~ 03B5(V03C41) and thus there exists an element T~ in 03B5( Hom(V03C41, V03C4)) such
that ~(v) = T~(v) for v E VI. Since ~ is a module map it then follows that

D~ is then the transpose of Tr.p. The converse is equally obvious.

2.2. UNITARITY

Corresponding to the decomposition (3) we have

Let Pt denote the projection of U(g) onto U(p) according to this and let (·, )vr
denote the inner product on V, for which r is unitary. Then, as is well known, the
prescription

defines, by sesqui-linearity, a hermitian form BT on M(V03C4). It is g-contravariant
in the following sense:

Moreover, up to multiplication by a non-zero, real constant, it is unique in this
respect. We let NT (or N039B) denote the radical of B03C4;
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It is clear that any t-type V C M(V03C4), V =1 YT, which is annihilated by p+ is

contained in NT. Thus, all images under non-surjective homomorphisms of highest
weight modules into M(V03C4) are contained in NT . From this it follows easily that
any proper invariant subspace is contained in NT .

Unitarity is in this connection equivalent to the induced form on M(V03C4)/N03C4
being positive definite. In many cases, one is more interested in W(03C4). Since the
duality (18) is defined on t-types, it is possible, though the pairing is not topologi-
cal, to transport a (pre-) Hilbert space structure back and forth. For this reason, we
shall not distinguish between the spaces as far as unitarity is concemed. In fact, we
may summarize our position by the following

DEFINITION 2.5. We say that dUT is unitarizable on W(03C4), or simply, unitary, if
the hermitian form induced by B,, on M(V03C4’)/N03C4’ is positive definite.

Observe that the vector space decomposition of P(V03C4) into p-types is indepen-
dent ofthe À in T = (Ao, 03BB). We shall occasionally use the following terminology:

DEFINITION 2.6. If a p-type q e P(V03C4) belongs to NT for a T = (039B0, 03BB) we say
that q vanishes at À.

2.3. ANNIHILATORS

Using the action (13) as well as the duality (18) there are some natural annihilators
one can associate to W(03C4):

DEFINITION 2.7.

Since W(T) is translation invariant,

for a fixed z, say, z = 0. Thus, it follows that

This fact immediately implies

LEMMA 2.8. Annp-(03C4) is invariant under the adjoint action of p on p-.

In certain situations it may be of interest to consider Annp+(r) instead of
Annp-(T), in fact, it is interesting to define Annp(03C4) for any abelian subalgebra p
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of g. In this connection we have the following somewhat surprising result:

PROPOSITION 2.9. Let g be an element of a connected complex Lie group GC
with Lie algebra g so that pg = Ad(g) (p-). Then,

Proof. It clearly suffices to consider elements of the form g = et·X for X E g
and t small. But, everything in sight being holomorphic, et’x p, for p e W(03C4),
is given by a convergent power series, which converges uniformly on compact
subsets of R  p-. Since each summand is in W(03C4), if dU03C4(q)W(03C4) = 0, then
also dUr( q) et.xW( T) = 0. Finally, by switching the roles of pg and .p- and by
replacing g by g-1, the other inclusion follows. D

Remark 2.10. It is well known that e.g. p+ satisfies the requirements for
Proposition 2.9. Thus, any algebraic property of Annp- is inherited by Annp+ (and
vice versa). One such property is, clearly, that they are ideals.

3. BGG

The most fundamental result used in this article is the well-known theorem of

Bernstein, Gelfand and Gelfand [1]. It emphasizes the importance of the Weyl
group and the Bruhat order, but, as we shall see below, one particular feature of the
present framework is that only certain subsets of the Weyl group are relevant. One
such subset, specialized to our situation is

The general analogues of this have been studied by Deodhar [7] and Boe [2].
We present here our approach [17]. Instead of Wc we focus directly on all Weyl

group elements that can be written as products of reflections by non-compact roots.
The following proposition is essentially Proposition 3.6 of [17].

DEFINITION 3.1. Let ~, 03C8 e ~*. A sequence of roots al, ... , 03B1k e 6+ is said
to satisfy condition (A) for the pair (~, 03C8) if

We will occasionally refer to such a sequence as a BGG-chain.

PROPOSITION 3.2. Let T2 = TA, for i = 1, 2. Let cp 7é 0 be a homomorphism
from M(Vrt) to M(Vr2). Then there exists a sequence al, ..., ak of elements of
0394+n which satisfies condition (A) for the pair (Al + P, A2 + p).
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In fact, the following stronger result holds (with a slight adaptation to our needs).
Since we want to keep track of what we use, and where, we list it separately:

PROPOSITION 3.3. (Strong BGG) Let Ti = TA, for i = 1, 2. For the conclusion
of Proposition 3.2 to hold, it is sufficient that M(VTt) occurs in the composition
series of M(VT2).

Observe that in Proposition 3.2 (and Proposition 3.3),

DEFINITION 3.4. The decomposition

corresponding to the above will be referred to as the canonical presentation of
039B1 - A2. We will also refer to the ’p’ occuring in (31) as the p occuring in the
canonical presentation.

Of course, there may be several canonical presentations, corresponding to dif-
ferent sequences of roots satisfying condition (A).

The following result, which is of interest in its own right, will be used in
Section 7:

PROPOSITION 3.5. Let 03B11,..., ak E On be a sequence of non-compact roots,
satisfying condition (A) for a pair (~, 03C8) = (039B1 + p, A + p) E h*. Put xo =
1/J and xi = 03C303B1i ··· 03C303B11 03C8 for i = 1,..., k. Then Xi = (039B + p) - pi for a pi =
nlal + ... + nia,, with nl, ... , ni ~ N, and

Proof. This follows by induction: For i = 1, p1 = n103B11, where n1 = ~039B+03C1, 03B11~.
Thus, (A + 03C1, p1~ = 2(039B+r,n103B11) n21 (03B11,03B11) = 1. Let us then assume that xi-i = A +

p - pl -1 satisfies the condition and consider ~i = 039B + p - pi-1 - niai with
""II. 1 1
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Remark 3.6. Observe that (32) is true in particular for the pj = p occuring in
the canonical presentation of Al - A.

4.1. THE BASIC OBSERVATIONS

The key fact in what follows is the following well known lemma which is a direct
reformulation of the facts that p:i: are abelian and that [p+, p-] ~ p:

In particular, if, E 0394+n the coefficient is 1. Hence the following is immediately
seen to hold:

COROLLARY 4.2.

COROLLARY 4.3.

Proof. 03C303B1(03BC) = y - (y, a) - a, hence the first assertion is clear. Let (a, p) = n
and observe that a - ny E 6. Since (a - ny, a) = 2 - |n|, it follows that

aa(a - n03BC) = (|n| - 1|03B1 - ny. 0

COROLLARY 4.4. In the notation of Proposition 3.2 let ~(1) = p E M(VT2).
Then p is a homogeneous polynomial of degree d = 03A3ki=1 ni.

Proof. It is clear, by the above observation, that p ~ u(p-). VT2 has weight
A2 - (03A3ki=1 ni03B3i). Since /3 occurs exactly once in each -y2 the claim follows. 

Remark 4.5. Should several sequences from 0394+n satisfy condition (A) for the
same pair (AI + p, A2 + p), this degree, of course, is the same.

Let VA denote a fixed non-zero element in the subspace of V03C4 = VA correspond-
ing to the highest weight. Equivalently, 03C5039B ~ 0 and (t)+VA = 0. We recall the
following which is a well-known result from the theory of tensor products between
finite-dimensional representations:

LEMMA 4.6. Any non-zero U(t) highest weight vector in U(p-) ~ VA has a
non-zero coefficient in u(p-) ~ VA-

We also recall the following very useful observations:

LEMMA 4.7. Let a E 0394+n. Then 039B0 - 03B1 is a highest weight for the U(t1)-module
(D VAo if and only if the following two conditions are satisfied:
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LEMMA 4.8. Let a e 0394+n and assume 03B1 - 03BCj e 0394+m for 03BCj e 03A3c for j = 1,..., i.
Then Ao - a is a highest weight for the U(p1) module p- 0 VT if and only if

Proof. [17]. (Observe that a minor misprint has been corrected.) 0

Remark 4.9. We shall later see that the ’i’ above is at most 2.

4.2. POLYNOMIALS

We begin by quoting a key fact from the existing literature:
Let ,1 = 03B2, 03B32,... 03B3r, be a maximal set of orthogonal roots in 0394+n, constructed

so that ,i is the element in 0394+n ~ {03B31..., 03B3j-1}~ with the smallest height; i =

2,..., r. (The real rank of go is then equal to r). Let 8i = 03B31 +··· + 03B3i, i = 1,..., r.

PROPOSITION 4.10. ([27]) The set of highest weights of the irreducible submod-
ules of the p-module U(p-) are

There are no multiplicities.

The following observation will be interesting in Sections 6 and 7:

PROPOSITION 4.11. For i = 1,...,,, let mi denote the t-type in U(p-) ofhighest
weight - 03B4i. Then, for i = 1, ... , r - 1, mi+1 ~ m1 ~i, whereas mi+j ~ m1~mi
for j &#x3E; 1.

Proof. Of course, ml = .p- so, since mi+1 has degree i + 1, by definition of
U(p-) there has to be some t-type m of degree i such that mi+l E m (g) ml . Let
the weight of m be 03C9 = -r103B41 + ··· - ri03B4i. Since the highest weights in m (D ml 1
are of the form 03C9 + q, for certain weights q of m 1, that is, -y E An, it thus follows
that

The second half of the statement follows by essentially the same argument. D
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4.3. THE LAST POSSIBLE PLACE OF UNITARITY

We briefly recall the following from [17]:
As a U(t)-module, M(V03C4) = U(p-) 0 V03C4. The restriction of BA to each t-

irreducible subspace is then either positive definite, negative definite, or identically
zero. For any irreducible t-representation there is a fixed degree so that any subspace
of M (VT ) that transforms according to this type has got this degree. It is furthermore
clear, because of the center of t, that types of different degree are perpendicular
with respect to BT . Likewise, it is clear that two different p-types are perpendicular.
We will throughout this article be interested in the one-parameter family of

representations 039B = 039B(03BB) = (039B0, 03BB) obtained by holding Ao fixed and letting À
vary throughout R.

As a p1-representation, V039B0 = VA for all À. In fact, let V be a subspace of M (VT )
which is invariant and irreducible under t and let q be a fixed highest weight vector.
Assume q has degree d. Then q is a highest weight vector for all À. Consider the
function

Then we have (cf. [17])

LEMMA 4.12. bq(03BB) = (-1)dCq03BBd + lower order terms in 03BB and Cq &#x3E; 0.

The zeros of bq are the only places where the restriction of B039B to the irreducible
subspace in question can change signature.

For a general t-type in M(V03C4) it is clear, since it is finite-dimensional, that for
À sufficiently negative the hermitian form will be positive definite. Likewise, for
À sufficiently positive, the type will be either posive definite or negative definite.
Furthermore, it is obvious that the signature of the hermitian form on any t-type,
varying with À, can only change at specific values of À at which the form becomes
degenerate. Due to the observation that different types are perpendicular, it then
follows that any sign change on a given t-type implies that the hermitian form on
all of M(YT) is degenerate. Thus, there is a non-trivial invariant subspace, and
hence, there is at least one non-trivial homomorphism ~: M(V03C41) ~ M(V03C4) for
some Tl . This observation will be crucial later on. For the moment we will focus

on p- ~ VT :
If q is a first order polynomial and if bq(03BBq) = 0 it is clear that W(039B0,03BB)’ cannot

be unitary for À  03BBq. The smallest Àq determined by a highest weight vector of
degree 1; Ào, was named ’the last possible place of unitarity’ and was explicitly
determined, for an arbitrary Ao in [16]:

PROPOSITION 4.13. Let Ao - a 1, ... Ao - as be the set of highest weights of
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determined by the equation

Then the last possible place of unitarity, Ao is given by

DEFINITION 4.14. The unique element of 0394+n for which this minimum is attained
is denoted by ,0 = 03B30(039B0).

Remark 4.15. That ,0 indeed is unique follows from the discussions in the
following 2 sections.

5. Diagrams

We present here the lemmas leading to the presentation of 0394+n as a two-dimensional
diagram. A substantial part of this can be found in [17], to which article we also
refer for the actual diagrams. We include it here since we need to use portions of
the proofs later on. Also, we have tried to make the construction more pedagogical.

LEMMA 5.1. Let a E 0394+n, lety 1, y be distinct elements of 03A3c, and assume
that 03B1 + 03BCj E 0394+n for all j = 1,..., i. Then 1 z 2. If i = 2 then 03B1 + 03BC1 + 03BC2 E 0394+n.

Proof. (i) Assume i  2 and ~j: (03B1, 03BCj) = 0.
Since in this case ( a + /-Lj, a + 03BCj) = ( a, a) + (03BCj, 03BCj), it follows that ( a +

03BCj, 03B1 + 03BCj) = 2(a,a) = 2(03BCj, 03BCj), and a and 03BCj are both short. Consider two
distinct elements pj, 1 and /-Lj2 from {03BC1,..., 03BCi}, and let ~03B1 + /’il a + Pj2) = n.
By Corollary 4.2, n = 0, 1, or 2, but n = 1 is excluded since 03BCji - 03BCj2 is not a root.
Because a + J-lj2 is long, it follows that (il., 03BCj2~ = ±2 and thus, since the roots
are simple, ~03BCj1, 03BCj2~ = -2. This, however, is not possible since by symmetry,
~03BCj2, 03BCj1~ = -2, and 03BCj1 1 is not proportional to J-lj2. Thus we conclude that there
can be at most one [L for which (a, MI) = 0. If this happens then a and pj are
short and a + 03BCj is long.

(ii) Assume i  3, (a, 03BCj1) = 0, (a, 03BCj2) ~ 0, and (a, 03BCj3) ~ 0.
Set n2 = ~03B1,03BCj2~ and n3 = ~03B1, 03BCj3~. By Corollary 4.3 it follows easily that

root strings containing a are at most of length 3. As in i), cx is short and hence

n2 = n3 = -1. Again by Corollary 4.3, ~03BCj2, 03B1~ = ~03BCj3, 03B1~ = -1, and, in
particular, J-lj2 and 03BCj3 are short. Clearly, a + J-lj2 and a + 03BCj3 are short. It follows that
~03B1 + 03BCj1, 03B1 + 03BCj2~ = 1 + ~03BCj1, /-Lj2) and, as in i), this implies that ~03BCj1, J-lj2) = -1.
Likewise, ~03BCj1, 03BCj3~ = -1. Consider now ( a + 03BCj2, 03B1 + 03BCj3~. By the previous
observations, this equals (/-Lj2’ /-Lj3)’ but, on the other hand, it must clearly equal
zero. Hence, 03BCj2 and J-lj3 are perpendicular, and hence a + J-lj2 + 03BCj3 E 0394+n. But,
~03B1 + Pj2 + J-lj3’ a + 03BCj1~ = -1, and this is a contradiction. So, if a 03BCj1 1 is present
and satisfies (a, 03BCj1~ = 0, at most one other simple compact root, say, J-lj2 can be
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present. In this case, a, J1jt’ and J1j2 are short, a + 03BCj1 is long and cx + 03BCj1 + J1j2 is
also a root. Observe that a - J1jt also is a long non-compact root.

(iii) Assume i  2 and ~03B1, 03BC1~ = -2.
It follows from ii) that ~03B1, J12) = - n  0, that a is long, and that 03BC1 is short.

But then ~03B1 + n03BC2, a + 203BC1~  0 which is impossible. Thus, if (a, 03BC1~ = -2 then
i= 1.

(iv) Assume ~03B1, 03BC1~ = ~03B1,03BC2~ = ~03B1, 03BC3~ == -1.
Then a, 03BC1, J12 and J13 are of equal length. By computing the various ~03B1+03BCi, 03B1+

03BCj~ terms, it follows that the compact roots must be pairwise orthogonal. But then,
say, cx + 03BC1 + J12 E 0394+n and the only possible value of ~03B1 + J11 + 03BC2, 03B1 + J13)
is -1, which is impossible. Thus, there can be at most two simple compact roots,
say, 03BC1 1 and J12 such that ~03B1, 03BC1~ = ~03B1, 03BC2~ = -1. In this case, ~03BC1, 03BC2~ =
0 and a + 03BC1 + J12 E 0394+n. D

Naturally, the following result also holds:

COROLLARY 5.2. Let a E 0394+n, let 03BC1,..., 03BCi be distinct elements of Ec, and
assume that a - J1j E 0394+n for all j = 1,..., i. Then i  2. If i = 2 then

With these results at our disposal, we can easily construct the diagram of 6t.
We start with /3. If there is only a single compact root pi for which 03B2 + pi E 6t
then we just draw an arrow with the label 03BC1, and (occasionally) a /3 at its beginning.
The arrowhead then represents the non-compact root (3 + 03BC1. We proceed like this
until we get to a situation in which two simple compact roots can be added to
the non-compact root we have reached. From then on we proceed as in the case
where already for /3 do two distinct simple compact roots 03BC1 and p2 exist such that
03B2 + 03BCi, i = 1, 2, are in 6t. Then, using Lemma 5.1, we draw two perpendicular
roots, usually in the NE and SW directions, representing these and then complete
the square (or ’diamond’ as we shall sometimes call it). After this we proceed from
the three new arrowheads as in the previous cases.
We shall use the following terminology:

DEFINITION 5.3. The diagram such obtained is said to be of hermitian type.

For later use we now state the following, which also amplifies the soundness of
our construction.

LEMMA 5.4. The configurations in Figure 1 are impossible. In fact, for no rx E 0394+n
do there exist three different roots, 03BC0, 03BC1 and IL2 E 03A3c such that a - ILl, a - IL2,
a - pi + po, and 03B1 - IL2 + po all are elements of 0394+n.

Proof. (This is essentially Lemma 4.2 and Figure 1 in [17].) By e.g. reversing
to an ordering of t by - S, it follows from the proof of Lemma 5.1, part (iv),
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Figure 2.

that ~03B1, 03BC1~ = (a, 112) = 1 and that à = a - /-LI - /-L2 is a positive non-compact
root. Observe that case ii) is excluded since we assume the compact roots to be
distinct. Moreover, à + MI is perpendicular to à + t12. The only possible value of
(à + pi + 03BC0, à + P2) is zero, so 03BC0 must be perpendicular to à + M2. Likewise, po
is perpendicular to à + 03BC1. But this implies that (à + pi + /zo? à + p2 + 03BC0~ &#x3E; 0,
in fact, since po is perpendicular to , 03BC11 and M2, it follows that the latter quantity
involves long roots and hence is equal to 1. That, of course, is impossible. c

The natural partial ordering in 0394+n given by 03B11  a2 V a 1 - 03B12 E R¿,
where R¿ denotes the positive root lattice corresponding to 6t, has an obvious
interpretation in terms of paths in the direction of the arrows and the following is
a useful observation:

LEMMA 5.5.

Proof. This is just a reformulation of the fact that p+ is an irreducible t-module
together with Corollary 5.2. 0

For future use we list a few lemmas about the finer structure of these diagrams.

LEMMA 5.6. The configuration in Figure 2 is impossible.
Proof. It follows easily (cf. the proof of Lemma 4.1 in [17]) that in such a

configuration, 03B1 must be long. Since a -f- v is a root, we must have 2(03B1,03BD 03B1,03B1) = -1
and furthermore, 2 (03B1,03BD) (03BD,03BD) = -1 since otherwise 03B3 = a + J-l + v would be a short
root for which 03B3 ± M as well as -y ib v are roots and this is excluded by the proof of
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Figure 4.

the above mentioned Lemma 4.1. Thus v is long. Now observe that since 203BC - 03BD
is not a root, ~03B1 + 2p, a + v) must equal 0. Thus,

an the last equation is absurd since it expresses 0 as a sum of an even number with
an odd. D

In a similar way one can establish

LEMMA 5.7. The configuration in Figure 3 is impossible.

COROLLARY 5.8. The configurations in Figure 4 are impossible.
Proof. Let us first consider the case in which the dots in Figure 4 just correspond

to a single simple compact root, 03BC2. It is clear that p2 fl v. Moreover, (a, /1) == -1
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since it follows from the diagram that (a + 03BC + 03BC2, 03BC~ = - 1 and thus (a, Il) = 0
would imply that ~03BC2, Il) = - 3 which is impossible. As a result, (a + Il, 03BC2~ =
-1 = (Il, 03BC2~. But by the proof of Lemma 5.1, all roots involved are short, and it
follows that (a + 03BC + 03BC2, Il) = 0 which is absurd.

In the general case it is easy to see that the root 03BC2 pointing away from 03B1 + Il
also must be the one that points into the Il to the right. Hence we get a similar
picture with the 03BC2’s, except that the chain of simple roots represented by the dots
has been shortened by 2. 

Many things can be proved directly by appealing to the diagrams and even
though it does tend to have a flavor of ’case-by-case’ it is most of the time clear

that a general phenomenon is at work. Sometimes the effort needed to unravel
this principle rigorously seems too big, and at other times it seems to be worth it.
We will try to balance between the two viewpoints, and finish this section by two
propositions that will be used in our treatment of annihilators (but not unitarity).
They can both, in an obvious and easy way, be established by looking at the various
diagrams:

PROPOSITION 5.9. Consider q03C9 for 03C9 = -03B4j. For j  2 there is a maximal
non-trivial reductive subalgebra ti of t that fixes q-03B4j. In fact, tj is the compact
subalgebra of a hermitian symmetric space compatible with the given, and with
the same ’03B2’.

PROPOSITION 5.10. The polynomial q-8J has an expression

with complex coefficients aj and elements z-03B3i1, ...., z-03B3ij E p-, where, further-

more, there is an index I such that ht(03B3i1) = ··· = ht(03B3ij) = ht(03B4j) j and aj 0.
Thus, if we plot these points ,it’ ..., 03B3ij in our diagram of 0394+n, they fall on a
horizontal line.

6. -io-lemmas

In this section we shall establish some important lemmas which narrow down
the possible configurations in the diagrammatic presentation of 0394+n of certain
subsets obtained in connection with a homomorphism between generalized Verma
modules. Specifically, the location relative to -yo is essential.

LEMMA 6.1. If, in Figure 5, (A, 03BD2~ ~ 0, then (v2, ’0) = 0 and ( A, 03BD2 ~ = 1.

Hence, in particular, there are two root lengths and v2 = vl or 03BD2 = 03BC1.

Proof. Let n2 = (A, 03BD2~. By the fact that A -,0 is a highest weight and from the
fact that 03BC1 and v2 correspond to simple roots, it follows that (A - (’0+ V2), 03BC1~  o.
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Figure 5.

Furthermore, by the definition of yo and Lemma 4.7, A - (,0 + v2) cannot be a
highest weight, hence

From Corollary 4.3 it follows that ~03B3, 03BD2~  2 for any non-compact root y. Thus,
we must have n2 = 1 and (qo + v2, v2) = 2. In particular, ,0 - v2 is also a root. 0

Remark 6.2. Observe that we only used Figure 5 in the generic sense. Some of
the roots need not be present.

DEFINITION 6.3.

LEMMA 6.4. Assume that ~039B + p, ’0) = 1 and let, E C-to, , ~ 03B30. Then

(A + 03C1, 03B3~ &#x3E; 1. Equivalently, if ~(039B0, À) + 03C1, 03B3~ = 1, then À  03BB0.
Proof. Since ((0, À),,) = 03BB or 2A (depending on whether 03B3 is long or short),

the equivalence between the two statements is clear. Thus, it suffices to prove the
first.

Let -j = ,0 + pi + ... + 03BCi, where 03BC1, ... , Mi are simple compact roots. It
follows that
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Figure 6.

where the constants Fo, FI, ... , Fi take values in {2, 1, 1 2} depending on whether
the length of the relevant root is shorter, equal, or longer than that of 7. Since
A is p1-dominant all cases are immediately clear except the one where 7 is long,
,0 is short, and 7 = ~0 + 03BC1 with 03BC1 (necessarily) short. But even in this case
we only get a problem if 039B0(H03BC1) = 0. However, due to the assumptions on the
lengths it follows that in the latter case there is a chain of non-compact roots
,1 1 = 03B30 - 03BC1, 03B30, 03B30 + 03BC1, and since ,0 = ,1 1 + 03BC1, this is, by Lemma 4.7, a
contradiction. D

LEMMA 6.5. With the notation of Figure 5, it is not possible to have 03BC1 occur

as a summand in 71 - 70 (expanded on simple roots) for some ,1 E C+03B30, and, at
the same time, vi occur as a summand in 12 - ,0 for some ,2 E C+03B30. If, say, 03BC1
takes part as such a summand, then there are two root lengths and either the case
of Figure 6 or of Figure 7 occurs.

Proof. Suppose 03BC1 1 occurs. Let 7 E C+03B30 be of minimal height such that 03BC1 is

pointing into 7. If there exists another root 03BC pointing into 03B3, then 03B3 - 03BC ~ C+03B30 and
03B3 is thus on one of the walls of C+03B30 passing through 70. Thus, 03BC = VI, which is
impossible by Corollary 5.8. Hence 03BC1 is the only root which points into 7. Using
the fact that A is not a highest weight of p- 0 VA it follows that ~03B3,03BC1~ = 2 and
thereby 7 - 203BC1 1 E 0394+n. Thus, 7,7 - 03BC1, and ,0 are on the same wall of C+03B30; the
one into which /-LI is pointing.

Suppose now that also vi occurs. Then, by the previous argument, there exists
a y E C+03B30 such that 03B3’, 03B3’ - VI, and ,0 are on the wall of C+03B30 into which vi is

pointing. But from the established properties of the diagram it then follows that
 = 03B3 + y - ,0 is a root in C+03B30 into which both 03BC1 and vi is pointing. This is
impossible by the minimality of 70. D

Remark 6. 6. In Figure 7 the subalgebras 03BC1 and U2 corresponding to {03BD2, ···, 03BDi}
and {03BC2, ···, 03BCj}, respectively, clearly commute. This case corresponds to Cn.

For a given A it is very easy to describe C+03B30, and one may adobt the informal
attitude that A is almost always completely trivial on the roots corresponding to
the arrows inside C+03B30. More precisely, we have:

LEMMA 6.7. If 03BC occur as a summand in ,1 -,0 (expanded on simple roots) for
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Figure 7.

some ,1 E C+03B30 and if 039B(H03BC) ~ 0, then, in the notation of Figure 5, 03BC = 03BC1 or

Il = 03BD1. In particular, there are two root lengths.
Proof The last assertion is obvious in view of Lemma 6.5. Suppose then that

Il satisfies the assumptions above. By passing to the boundary of C+03B30 it is clear

that we can find a  E C+03B30,  ~ 03B30, so that either Il is the only simple compact
root pointing into :r, or the other simple root pointing into  is 03BC1 or VI. As in the

proof of the previous lemma it follows that ~, Il) = 2 and hence there are two root
lengths. But then  - 03BC is also a positive non-compact root having Il pointing into
it and either there are no other roots pointing into  - Il, which then must equal
10, or some other root vs does point into it. In the latter case we then repeat the
argument with  replaced by  - vs, as in the proof of Lemma 6.5 (cf. Figure 7). D

LEMMA 6.8. C+03B30 is a union of at most two diagrams of hermitian type. If there
are two they are connected by the arrows corresponding to a single Il E Se.

Proof. Let utop be the subalgebra of t generated by the simple roots 03BC
occuring in C+03B30 and satisfying (in the language of Figure 5) 03BC ~ 03BC1, 03BD1. Let
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utop = u1 X U2  ··· X ur be a decomposition into simple factors. Then r  2
since otherwise, the ui’s have to ’interact’ due to the 2-dimensional nature of the
diagrams. If neither Mi nor VI occurs later on, then C+03B30 is invariant, and since ,0
is connected to 03B3r the claim follows easily. The other case follows by arguments
similar to those used around Figure 6 and Figure 7 in Lemma 6.5. a

Observe that ,0 will be the unique simple non-compact root of one of these
diagrams, i.e. the ’03B2’ for that structure.

DEFINITION 6.9. The hermitian symmetric spaces corresponding to the above
are denoted by D~(03B30) and D~ (yo), and are called the hermitian symmetric spaces
defined by qo. We will always assume that the one indexed by the 1 is the one
whose diagram contains ,o. If the one indexed by the 1 is not present, we drop the
arrows and simply talk about the hermitian symmetric space defined by qo.

The interrelation between polynomials on these hermitian symmetric subspaces
and on the full hermitian symmetric space will be of interest later on:

LEMMA 6.10. Suppose that gl 1 Ç g is a simple subalgebra of g which, in its own
right, corresponds to a hermitian symmetric space and assume that this structure
is compatible with that of g, that is, if

then pt C pf: and tl ç t. More precisely, assume that the hermitian symmetric
space corresponding to QI is either D~(03B30) or, where applicable, D~(03B30). Let
03B4(1)1, .((1) be the quantities corresponding to the 03B4i ’s, i = 1,..., fi g, and
let m(1)i be the tl-type corresponding to the weight -03B4(1)i, i = 1,..., r1. Then
Vi = 1,..., ri, m(1)i C mi, and mi is the only t-type in u(p-) for which m(1)i
can be obtained by restricting the variables to p-1.

Proof Obviously, m(1)1 C m 1 always. Consider the case in which there is
only one hermitian symmetric space defined by C+03B30. Then the root subspace cor-
responding to -,r is contained in p-1, and therefore, in this case, we can use a
conjugation by the Weyl group element which preserves 0394+n and exchanges /3 and
’T to get to a situation in which the ’03B2’ of the ’small’ hermitian space is the same
as the ’/3’ of the big. But then the conclusion is obvious. The remaining cases are
those that correspond to Figures 6 and 7. The one corresponding to Figure 6 is very
trivial, and the one corresponding to Figure 7 is almost as simple. For the latter,
observe that either UI or U2 (cf. above) is the compact subalgebra corresponding
to the space Vi (’0) which was taken care of by the previous argument. But then
the case of D~(03B30), which involves both UI and u2, follows directly, being one of
the previous (An ) cases. 
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Remark 6.11. By pointing at the various diagrams for the hermitian symmetric
spaces, one can easily see that the lemma above remains valid without the restric-
tion imposed in the sentence ’More precisely ... ’.

Returning to the setup in subsection 2.1, a related result is the following:

LEMMA 6.12. Let yo be defined as previously, let p g be the Ip-’ of D~(03B30), and
let p, be that of the other (when it exists). Construct the standard set of strongly
orthogonal non-compact roots ,0 = 1,..., t for p-~, and let 1, ..., s be the
analogues for p-~ Then there exists a unique f-lype in U(p-) 0 VA of highest weight
A - (71 + ... + l) = A - 03BE(03B30, 1) for any l  t. Moreover, the coefficient of the
corresponding highest weight vector with respect to the highest weight vector in
VA is exactly the highest weight vector in U (p-~) whose weight is - (ji + ... + l).
Furthermore, consider those values of   s for which the set 1, ... , 78 can be
complemented with a set of orthogonal roots ,1, ..., ,t corresponding to p-~ so
that 039B = 039B - ,1 - ... - ,t - 71 - ... - 78 = A - ç( ,0, s + t) is t-dominant.
Then there exists a unique t-type in U(p-) 0 VA of highest weight As.

Proof. Let {03C5039B, VI, ... , vd} be a basis of VA such that v039B is the highest weight
vector and such that B/ i = 1,..., d : vi E r- - U(p-). 03C5039B. Consider the highest
weight vector PryO corresponding to the t-type VA-ro in P- 0 VA of highest weight
A - ,o. Then

and po - Z-rO =1 0. We can then use VA-,y, as our ’VA’ and determine the type
corresponding to the last possible place of unitarity in .p- 0 VA-ro. The weight of
the latter is, naturally, A - 1 - i2 since the simple root(s) pointing out from yo
have weight 1 in A - qo. By keeping track of the VA-coefficient and the known
behaviour of the tensor products of polynomials it follows that in the case where
there is only one hermitian symmetric space, this type will be non-zero. The rest
follows analogously. When there are two hermitian symmetric spaces one splits
the argument into two (identical) steps. Specifically, it is only when we are forced
into the region corresponding to the ’top’ hermitian space that the situation is new.
But we can begin, using Lemma 6.1 O, by considering polynomials in the top space.
These are then not highest weight with respect to 03BC1, but this can be repaired by
throwing in a suitable polynomial from D~(03B30). The only limitation is that it must
be a highest weight representation both for ul and u2. (See Figure 15). D

DEFINITION 6.13. For given 1, respectively s + t, the representation in Lem-
ma 6.12 is called the leading 1-minor, respectively s + t-minor, representation cor-
responding to Ao. In the sequel we always write the highest weights as A - ç( ,0, 1)
and 039B - ç( ,0, s + t), respectively, thus defining the expressions ç( ,0, d) in certain
degrees d. We let to denote the biggest degree d in which there is a leading d-minor
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representation.

Remark 6.14. For each i, V(A - ç( ,0, i)) has got multiplicity 1 in U(p-)V(A)
and V(A - ç( ,0, i + 1)) C U(p-)V(039B - ç( ,0, i)). In fact, V(A - ç( ,0, i)) is the
only irreducible t-type in the space of ith order elements in U(p-) ~ V(039B) from
which V(A - ç( ,0, i + 1)) can be reached by applying p-.

In the special case where Ao = 0, to = r (Section 4.2.)

Remark 6.15. The results and definitions above concerning U(p-) ~ V (A) and
its multiplicities, as well as several to come, are independent of À in A = (Ao, 03BB).
The reason is that U(p-) ~ V(A) as P1-module is independent of À since, given
Ao, A is completely determined by Ao together with its value on the center of t.

There are many more reasons that C 1+ is important. One is the following: Let
V039B-03B30 be the t-irreducible subspace of p- 0 VA of highest weight A - yo.

LEMMA 6.16.

Proof. It is clear that we may assume that Vi = 1,..., d: vi E U(p-). p-. VA -
Furthermore, it is clear that the highest weight vector p039B-03B30 in V039B-03B30 can be chosen
to be of the form

with a non-zéro z03B30 E (p-)-03B30 as in (9) and zl , ... , zd E p-. Since
U(p-)· PA -,0’ the conclusion is evident.

We will now investigate, under some special extra assumptions, homomor-
phisms between generalized Verma modules. Thus, in the following also A 1 is

p-finite, and this is essential.

PROPOSITION 6.17. Suppose that ~039B + p, 03B30~  1 and that there is a non-trivial

homomorphism ~: M(V039B1) ~ M(VA). Then, in the canonical presentation of
039B1 - A, something from C+03B30 has to occur.

Proof. Let ~0=039B+03C1. Points occuring in the BGG-chain have got to have
~~0, 03B1~  1. This follows because ~~i-1, 03B1i~  1, ~i-1 = Xo - 03A3i-1j=1 nj03B1j and,
by Corollary 4.2, Vi, j : ~03B1i, ai 0.

Suppose on the contrary that none of the roots are in C+03B30. The,’s in the BGG-
chain then fall in two disjoint sets, L and R (see Figure 8). Let us look at the points
in L. Draw a SW-NE line through ,0 and define this as the level 0 base line. We may
then divide L into disjoint subsets Li = {03B3 ~ L|03B3 is on a SW-NE line at level i
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Figure 8.

above the baseline}. Here, the level is the number of simple roots one has to add
to ,0 to get to the first intersection between Li and C+03B30. Now observe that L1 = 0.
This follows by looking at the simple compact root pi in Figure 5 pointing into
,0 in the SW-NE direction. The only possible element of L 1 is ,0 - 03BC1 + v2,
and for this to satisfy the requirement we must be in a situation as in Lemma 6.1.
Furthermore, by Lemma 5.4 and Lemma 5.6, either 03BC1 = v2 or v2 is not present
at all. In both cases, L 1 = Ø. Now let io be the smallest positive integer such that
Li0 ~ 0. Let 7 e Lio and let vio+1 be the simple compact root pointing into 7 in the
SE-NW direction. By appealing to Lemma 6.7 we may assume that (A, 1/io+l) = 0.
Already by assumption, ~03B3, 03BDi0+1~ &#x3E; 0. Hence, in 039B1 = A - n03B303B3 - 03A3 ni,i, which
is r-dominant, there has got to be some ,i with negative inner product with 03BDi0+1.
But these cannot come from the set L by Lemma 5.4, Lemma 5.6, Corollary 5.8
and/or the definition of io. Again by Lemma 5.4, Lemma 5.6, they cannot come
from the right hand side, R, either, since vio+ then would occur with multiplicity
 2 in one of the configurations which have been ruled out by Lemma 5.4. o

PROPOSITION 6.18. If, under the same assumptions as in Proposition 6.17,
039B1 = A - Li ni ai with ni e N and ~i = 1,..., s: ai e 0394+n, then for at least one

Proof. Let us first assume that we are in a situation as in Figure 5, with both 1-11 
and vl present. Due to Lemma 5.4, Lemma 5.6, and Corollary 5.8 it is clear that
we may assume that MI and vl do not both occur further down towards /3, i.e. when
,0 - /3 is written as a sum of simple compact roots then the two mentioned ones
do not both have multiplicity greater than 1. Assume that pi has multiplicity 1. In
the canonical decomposition, let M denote the number of elements, counted with
multiplicitity, that belong to C+03B30.
Now suppose that we were to take the canonical expression and rewrite it in

such a way that nothing from C+03B30 occurs. Clearly, then, the M abovementioned
elements must be relegated to the shaded area in Figure 9. Moreover, observe that
the degree stays fixed (see Remark 4.5). However these new points do not help us
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Figure 9.

to get rid of the M vi -summands stemming from C+03B30. On the other hand, due to
degree considerations, we have used our quota, so this problem cannot be remedied.

It remains to consider the case in which, say, the MI is not present in Figure 5. Let
n denote the multiplicity of vl in ,0 - 13. It is then clear that n (or n + 1) also is
the multiplicity of VI in a - 13 for any a E C+. (Usually, n1 = 1, but in a few cases,
for sp(n, R), it may equal 2.) But this means that if we are to replace the a’s from
C+03B30 with some other elements of A+ there will be a deficit in the VI account, of
magnitude at least M (M being the same as above). Hence this is also impossible. c

Let us now take a general look at the conditions ~039B + 03C1, 03B30)  1 and ~039B + 03C1, 03B3~ 
1 for any root 03B3 occuring in a BGG-chain (cf. the proof of Proposition 6.17).

Again, set ~0 = A + p and let x = (~0, -yo). As mentioned previously, if, takes
part in a BGG-chain then necessarily (~0, 03B3) &#x3E; 0. Thus, q must satisfy

Let us assume that we are not in a situation as in Figure 6 or Figure 7. Suppose
further that ", - v, and, - v + 03BC E C+03B30 for some simple compact roots v, y. It
follows from the proof of Lemma 5.1 that in this situation, v and p have the same
square length (equal to either (",) or 1 2(03B3, 03B3)). Thus, since (A, v) = (039B, 03BC) = 0
(cf. Lemma 6.7),

for some constant F (which further may be seen to be either 1 or 2).
As a consequence, the set of 03B3 e C+03B30 for which ~~0 1) &#x3E; 0 is bounded by a line

in the W-E direction given by the set of points, E C+03B30 for which 03B3 - -io has a fixed
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height h = h(x). Furthermore, it is clear that in Proposition 6.17 and Proposition
6.18 we can improve the statement there by replacing C+03B30 by C+(h(x))03B30.

In the case described by, in particular, Figure 7, the situation is a little more
complicated, but essentially the same.
We collect some of these remarks into the following:

COROLLARY 6.19. Suppose that the hermitian symmetric space defined by ,0
has only one root length. Assume that (’0, ’0) = 2, let x = (Xo, 03B30) be as above,
and assume x ~ {1, 0, -1, ... , - n, ...}. Then the elements of C+03B30 referred to in
Proposition 6.17 and Proposition 6.18 belong to C+03B30(1 - x).

Proof. It is clear that A is trivial on the compact roots corresponding to the
hermitian symmetric space defined by 03B30. Furthermore, let -y and, + v belong to

C+03B30 for some simple compact root v. Then, according to the assumptions,

Since furthermore x = (A + p, ’0), the conclusion follows. 

Remark 6.20. Of course, analogous formulas may be given for the remaining
cases.

The implications of these rather simple observations will be made much more
explicit below and in the next section but for now let us assume that the diagram
representing 0394+n is contained in a diagram as described in Figure 10, where we
further assume that there is only one root length and that all the simple compact
roots 03BC1, ..., /1s, 03BD1,..., Vr are distinct. Let us also assume that r  s.
We can now see that as soon as the value of (A + p, ’0) is so small (this is a

condition on the ’03BB’ of A) that any 03B3 e 0394+n satisfying that (A + p, ,) &#x3E; 0 is forced

to be in the shaded area, then there can be no homomorphism of a generalized
Verma module M(V039B1) into M(V039B). The reason is that the shaded area cannot
define a 039B1 which is P1-dominant:

Suppose, namely, that 039B1 = A - 03A3ij=1 7j with the 03B3j’s coming from the shaded
area. Assume that they in fact all are above the line indicated at Vio but that they are
not all above the line at 03BDi0+1. Then, since our assumptions imply that (A, Vio) = 0,
it is clear that ~039B1, Vio)  0. This, of course, is impossible.
We can now settle the unitarity in an important special case:

THEOREM 6.21. Let W(03BB) = W((0,03BB)’) be a scalar module of weight À.
Assume that the real rank r of g is greater than one. Then there is a unique negative
À = À2c at which the t-type m2 in u(p-) of weight -03B31 - 03B32 is in the radical of the
hermitian form. At this point there is unitarity for W(03BBsc2). The values are listed
below. More generally, there is a negative 03BBi at which the p-type mi in U(p-) of
weight -03B31 - ··· - 03B3i is in the radical of the hermitian form but ml, ... , mi-l 
are not. At this point, there is unitarity, in fact, 03BBi = ( i - 1) 03BBsc2 and W(03BBi) is
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Figure 10.

contained in the ( i - 1) fold tensor product of W(03BBsc2) with itself. If 03BB  (Àr) and
A e {0, 03BBsc2,..., 03BBr}, W(03BB) is not unitary, but for À  Àr, W(03BB) is unitary.

Proof (Sketch). By locating either a su(2, 2) (a ’diamond’ 0) or a sp(2, R) (a
’hook’) inside the diagram, which is possible by the assumption on the real rank
(notice the sp(2, R) inside so(2n +1,2)) it follows from the well established theory
of these two algebras (or a very simple direct calculation) that some second order
polynomial is perpendicular to itself under the hermitian form at a strictly negative
value of 03BB. Thus, since the polynomials whose weights are of the form -n· .,1 have
their zeros for positive À’s (a trivial fact), the type m2 must vanish at a negative
À. But recalling how the algebra U(p-) is built up, it follows easily that at that
À, the only polynomials that can stay outside the radical of the hermitian form
are those of the above mentioned weights - n . ,1. These, since their vanishing
takes place at positive 03BB’s, and because of the way the inner product depends on À,
define a subspace on which the hermitian form is positive definite. To finish this
case we need only determine said a = 03BBsc2. A major point here is of course that
there must be a homomorphism corresponding to this À, a homomorphism defined
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Figure 11. The BGG-chain {03B11, 03B12} that defines the homomorphism at a2 in the case of
su(p, q)(p, q  2). Naturally, they both have multiplicity 1.

by either two different points a 1, rx2 in 0394+n or a single a with multiplicity 2. It is
then clear that the diamond (resp. hook) closest to 13 will be the one that defines
the homomorphism corresponding to the vanishing of m2 at 03BBsc2. If we let a and
a2 denote the western and eastem corner of the diamond, respectively, then clearly
(cf. Figure 11 )

The last remark for this case is that of course there can be no unitarity in-between
since m2 also vanishes at 0 and has a positive inner product with itself for A
sufficiently negative.

Let us now look at W(03BBsc2) ~ W(À2C). We decompose this by viewing it as
a space of polynomials on the product space of the hermitian symmetric space
with itself and then restricting to the diagonal [14]. In particular, W( À2c + 03BBsc2) is
the quotient of the whole space by those polynomials that vanish on the diagonal.
Now, clearly, as a space of polynomials on the hermitian symmetric space, W(03BBsc2 +
À2C) = W(03BBsc2)·W(03BBsc2). Hence, since m2 ~ W(03BBsc2) whereas mi e W(03BBsc2), by
Proposition 4.11 m2 E W(2À2C) and m3 ~ W(2À2C). In particular, m3 vanishes at
03BB3 Def. 203BBsc2.

The unitarity of the higher order ones follow similarly by tensoring W(03BBsc2) with
itself. By Proposition 4.11, the t-type mi that vanishes at Ai is in the ideal generated
by mi-1 and hence also vanishes at A,-,. Thus, mi vanishes at 0, À2, ... , Ai, which
exhaust the list of possible zeros for the restriction of the hermitian form to mi.
Since the A dependence of the form is given by Lemma 4.12 it follows that it is
negative definite on mi for À ~] 03BBi-1, 03BBi[.

That there is unitarity for À  03BBr can be seen as follows: First of all we know,
as remarked following Lemma 4.12, that for a given t-type we have positivity for
À sufficiently negative. Suppose a Mype -p changes sign at a À  Ar . It then
follows easily (here we use the strong version of BGG, Proposition 3.3) that there
is a homomorphism between generalized highest weight modules at this point.
With no loss of generality, we may assume that this homomorphism is defined by
-p. Thus, (Proposition 3.5)
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Figure 12.

Let p = n103B31 + . . + nrqr and let p, = (p, ’i). Then (56) becomes

Under the assumption that all ni =1 0, the righthand side of (57), viewed as a
function of the ni’s, is easily seen to have its minimum for n 1 = ... = nr = 1 and
this corresponds exactly to the - p = mr . D

Remark 6.22. A different, though related proof may be given using the obser-
vations following Remark 6.20 about the limitations on the allowed subsets of the
diagrams. Finally, one can use the established results ([18]) about homomorphisms
into scalar modules to give a third proof of the last part of the theorem. Actually
the latter results assume the classification of unitarizable, scalar modules, but only
in a mild, and for the present purposes, removable way.

Remark 6.23. The values of a2 can easily be computed directly from the
diagrams (cf. [17]). They are



343

THEOREM 6.24.

is a homomorphism

Proof. If j = 1, the claim follows by the definition of qo. Let Msc2 = M(0, 03BBsc2)
and consider the g-module

Inside M( 71) we have the submodule M( 71) = u(p-)V(039B-03B30) and inside M2Cthe
submodule M2c = u(p-)m2. The highest weight modules SI = M(Tl)/M(Tl)
and S2 = Msc2/Msc2 may then, as t-modules, be viewed as certain subspaces
P1 and P2 of U(p-) ~ V(A) and U(p-), respectively. The t-type of highest
weight A - ,0 is missing from SI and the set of the highest weights inside S2 is
{-i03B41 i = 0, 1, ...}. Inside the tensor product Si 0 S2, the vector v == VTt 0 1sc2,
where VTt and 12 are highest weight vectors in SI and S2, respectively, defines a
highest weight representation of g. This representation will clearly be a quotient of
M ( 72). Furthermore, the subrepresentation generated by v will have a set of t-types
which is contained in P1 0 P2, indeed contained in PI(P2). But, cf. Remark 6.14,
the t-type of highest weight 039B - 03BE(-03B30, 2) does not appear in this space. It then follows
that there is a proper g-invariant subspace of M(03C42) and this subspace contains
the unique t-type V(2) of the mentioned highest weight. Finally it is easy to see
that p+(V(2)) = 0. This last claim follows by observing that if p+(V(2)) ~ 0 it
would have to be a space of highest weight A - yo and this would give rise to a
homomorphism M(V(A- ’0)) ~ M(V(039B)) at a value of À equal to 03BB1, and this
is of course impossible. (See also Remark 6.25 below).

The cases j = 3, ... follow analogously. D

Remark 6.25. It is very easy to describe the roots y taking part in the BGG-
chains corresponding to Theorem 6.24. They lie on a single horizontal line inside

C+03B30 in an appropriate height above qo. In the cases su(p, q), so(2n - 2, 2), so*(2n),
e6, and e7 the value of (A + p, a) is constant and equal to 1. For so(2n - 3, 2) and
sp(n, R) it is 1 or 2 depending on the length of yo, the length of 03B3, and the location
of, relative to D~(03B30).

The following theorems are crucial in several places in the next chapter.
Many of the general results above can be strengthened by using more explicitly

the representation theory of the algebras t. Indeed, the cases corresponding to
so(n, 2), e6, and e7 are almost completely trivial, but in the remaining cases one
is left with some questions about the representation theory of u(n). These are, in
general, somewhat complicated. Another way of strengthening the above results
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Figure 13. Typical situation in the proof of Proposition 6.26. Here, 1’0 is short. Inside C+03B30,
(A + p, 03B1~  2 above the string of l’s and is non-positive below. Outside, at each of the x’s
the value is less than or equal to 0 (the values may differ). Any occurrence of a number  2
is incompatible with the weight coming from a mi.

is by restricting to the cases where ,0 is on a ’wall’ of the diagram (i.e. the
total number of simple compact roots that can be added/subtracted to/from ,0 to
give non-compact roots is at most 3). Here, the ’nature’ of the configurations is
very simple and so is the representation theory (again it is essentially only u(n)
arguments, but here very easy).
We choose then to consider ,0 on a wall since it is possible to give the following

general proofs and since it in the end tums out to be sufficient.

PROPOSITION 6.26. Suppose that ,0 is on a wall. In the notation of Defini-
tion 6.13, let A - 03BE(03B30, j) -  be a highest weight in U(P-)0V(A - 03BE(03B30, j))
as well as in mi 0 V(039B) for some mi (i  j). Then the natural projection of
U(p-)~V(039B - 03BE(03B30, j)) into u(p-)~V(039B) is injective on the space(s) corre-
sponding to this highest weight.

Proof. Let us consider the special value Àj-l 1 for which 039B - ç( ,0, j) is a
primitive weight in the g-module U(p-) ~ V(039B) (Theorem 6.24). We then have
a homomorphism M(V(A - 03BE(03B30,j))) ~ M(V(A)) and the kemel for that is
exactly the kemel for the natural projection. Let us consider a t-type in this kemel
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Figure 14. Situation from the proof of Proposition 6.26. Here, 10 is long. Inside C+03B30, (A +
p, 03B1~  3 above the string of 2’s and is less than or equal to 1 below. Outside, at each of the
x’s the value is less than or equal to 0 (the values may differ). Any occurrence of a number
 3 is incompatible with the weight coming from a mi. Such a 3 (or more) will have to appear
if anything from outside of C+03B30 takes part in the BGG-chain. This is the only non-trivial case,
but we can also see that even though a string of l’s inside C+03B30 is formally possible, this does
not correspond to a polynomial representation. (Cf. the second condition in Lemma 4.7). It
follows easily that we also here will be forced to consider values  3 unless we consider
the BGG-chain consisting of the 2’s plus the 1 at the long root. But this is the chain that
corresponds to 039B - 03BE(03B30, j).

of smallest possible degree and let A - 03BE(03B30, j) - wl be its highest weight. Such
a type will define a homomorphism into M(V(A - 03BE(03B30,j))) and further on
into M(V(A)). Hence we get a BGG-chain which, of course, is not the one

corresponding to A - ç( ,0, j). The two conditions, (i) A - ç( ,0, j) - ési should be
dominant and coming from a BGG-chain and (ii) A - 03BE(03B30,j) - 1 should be equal
to a weight of the form 039B - 03BE for a weight - 03BE in the t-type mi, are now easily seen
to be incompatible. See Figure 13 and Figure 14. The general statement follows
readily from this. D

PROPOSITION 6.27. Suppose that ,0 is on a wall. Suppose that A - 03BE(03B30, j) - w
is a highest weight in the tensor product
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where i  j. Then

Proof. This can be proved by checking multiplicities. We notice that the only
non-trivial cases involve u(n) (corresponding to su(p, q), sp(n, R), and so*(2n)).
Here we have the Littlewood-Richardson Rule (the LR Rule) [19] for computing
multiplicities in a tensor product. Specifically, we must prove that the multiplicity
of the representation T in mi 0 V(A) whose highest weight is A - 03BE(03B30, j) - 
is the same as its multiplicity in U(p-)V(039B - 03BE(03B30, j)). Here we begin by estab-
lishing that the multiplicities of T in the first mentioned space is the same as in
U(p-) ~ V(A - 03BE(03B30,j)) (in fact, in mi-j ~ V(A - 03BE(03B30, j)). This is where the
LR Rule comes in together with the assumption about 70’ These namely make it
easy to see that these multiplicities are the same. Indeed, in all cases except the
one where 70 is a long root in sp(n, R), the multiplicities are 1 in both places. To
wit, in each of these cases there is a representation of u(n) involved of the form
(0, ... , 0, 1, 0,..., 0) (a fundamental weight), and a such gives multiplicity 1. The
case of the long root in sp(n, R) may have bigger multiplicities, but again, using
the LR Rule on a tensor product involving an mi, it is elementary to see that the
multiplicities are the same. We omit the details. (Cf. Remark 6.28 below). The
proof is then completed by using Proposition 6.26. 

Remark 6.28. It tums out that one, by using a tensor product argument, in the
case of sp(n, R) need only treat the cases (r, 0,..., 0). For these, the above claims
are very easy.

PROPOSITION 6.29. Suppose that ,0 is on a wall. Consider a highest weight
vector vh;gh for t in u(p-) ~ VT. Let 039B - 03BE be its weight, and assume that 03BE can be
written as a sum of positive non-compact roots in such a way that the summands
03B3j all satisfy

for some non-negative integer b. Then

Proof. Suppose 03BE can be written as a combination of elements from Ct for
some 03B21 on the same wall as -yo. Set a = ht(-yo - 01) and assume a is the smallest
such integer. With no loss of generality we may assume that a j 1 since otherwise
we need only consider D(03B30) (possibly with arrows up and down) and then it

is trivial. By looking at the other wall that contains /3 (corresponding to 03BCi’s on
which A is trivial) it follows that there is a p-type ms in u(p-) of size at least
s = (a + b + 1) such that (cf. Figure 12)
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Figure 15.

More precisely, there must be a t-type VI in ms ~ V(A) of highest weight
A - ç( ,0, b + 1) - w such that Vhigh E U(p-)V1. Now we just consider ms 0 V(A)
since the type in question must be contained in the tensor product of a such with
U(p-). But the claim then follows from Proposition 6.27. 

7. Main Theorems

THEOREM 7.1. Suppose that-yo is on a wall. Let T = 039B0, 03BB). At 03BB = Ao, W(VTI)O
is a highest weight module generated by the first order polynomial p039B-03B30 E p- 0 VA
of highest weight A -’o. More generally, if 03BB = Àj-l 1 = Ao + (j - 1). Asc, with 03BBsc2
as in Theorem 6.21, then N(V,) - W(V’03C4)0 is a non-trivial highest weight module
of weight A - ç(,o,j). Furthermore,forÀ  03BBt0-1, W(VT)O = 0. Moreover,
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M (VT) is unitarizable exactly for

Proof. Let us first tum our attention to the unitarity at À = 03BB0: If the hermitian
form, when restricted to some t-type, is not positive semi-definite it is because
the signature, which clearly is positive for À sufficiently negative, has changed
sign at some À  Ào. Assume this to be the case. It follows then easily, by
looking at such a t-type of the smallest possible degree, that for a À for which
(A + 03C1, 03C10)  0 there is a non-trivial homomorphism ~: M(V039B1) ~ M(VA).
However, then Proposition 6.17, Proposition 6.18, and, notably, Proposition 6.29
can be applied and we conclude that if we consider the vector Vhigh which defines
the homomorphism then it satisfies (63). This, on the other hand, immediately
implies that vhigh belongs to the radical of the hermitian form at À = Ào. This is a
contradiction and hence all p-types are positive semi-definite at Ào.

The cases involving higher order annihilators follow analogously. The main new
ingredients are Corollary 6.19, the description following it, and Theorem 6.24.

As in the proof of Theorem 6.24, our main tool is to form tensor products with
the representation W(03BBsc2) = W((0, 03BBsc2)’) from Theorem 6.21. Specifically, each
irreducible summand in W((039B0, 03BB0)’) (D W(03BBsc2) is unitary. It then follows by [14]
that

where Res denotes the restriction to the diagonal, is unitary.
Let us assume that t0  2. As was hinted at in the introduction and proved in

[15], it follows from this that the annihilator of W((03BB0, Ào + 03BBsc2)’) is contained in
the annihilator of W«Ao, Ao)’). This inclusion will be proper because W((0, À2C)’)
contains all first order polynomials and hence, so does W((039B0, 03BB0 + À2C)’). Further-
more, it is clear by Theorem 6.24 that the element of highest weight (Ao, ao-f- 03BBsc2)-
il - i2 is in the annihilator of W((039B0, Ao + À2C)’). In fact, it is clear by Lemma 6.10
that we are in a situation quite analogous to the one for scalar modules. (Including
the issue of the lack of unitarity in the intervals 1 A., 03BBi-1[; i = 1,..., to - 1). So,
we can continue the argument to W((Ao, Ào + 203BBsc2)’),..., W((Ao, Ao + iÀ2C)’)
until we reach the continuous part of the range of unitarity-just as in the case of
scalar modules. (The endpoint of the half line of unitarity was previously ([17])
named the ’first possible place of non-unitarity’ because one can easily check that
this, in the spirit of Bemstein-Gelfand-Gelfand, indeed is the first place, for À
coming from -~, where a homomorphism between generalized Verma modules
can exist). Specifically, to is the real rank of the Lie algebra corresponding to D(03B30).

Finally there is the issue of the annihilators also here being highest weight
modules. Let us consider W((039B0, Ào + j03BBsc2)’). We then know that the element
corresponding to the weight A - ç( ,0, j + 1) is in the annihilator of the module.
Suppose the annihilator is not generated by this single t-type. Then there must be an
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element of weight, say, A2 in the annihilator which, modulo the subspace generated
by the type corresponding to A - ç( ,0, j + 1), is a highest weight vector. Hence
(Proposition 3.3) we get a sequence of roots a 1, ... , rxs e 0394+n which satisfies
condition (A) and which, therefore, fall in a certain subset of On restricted by the
requirement of positivity in this condition. This condition can easily be translated
into

But then Proposition 6.29 gives that the type after all is in the ideal generated by
the £-type in question.

What remains are the corresponding cases for the situations described by Fig-
ures 6 and 7. Of these the one in Figure 6 can be dismissed immediately as trivial
and the one in Figure 7 is quite analogous to the previous. Indeed, for small values
of ’j’ in (Ào + j03BBsc2), there is no difference between this case and the one treated
previously. It is only when we are forced into the region corresponding to the
’top’ hermitian space that the situation is new. But we still have Lemma 6.12 and
so everything carries over, including the explanation of the continuous range of
unitarity. (Cf. Figure 15) 1:1

THEOREM 7.2. Suppose that 03B30 be arbitrary. Let T = (039B0, À).At À == Ào, W(VT’)0
is a highest weight module generated by the first order polynomial polynomial p039B-03B30 E p- 0 VA
of highest weight 039B- 03B30. More generally, if A 1 = 03BB0 - ( j - 1 À2c, with À2c
as in Theorem 6.21, then N(Vt) = W(YT)o is a non-trivial highest weight module
of weight 039B - 03BE(03B30,j). Furthermore, for A  03BBt0-1, W(V03C4)0 = 0. Moreover,

M(VT) is unitarizable exactly for

Proof. The only non-trivial cases are An and Cn. In both cases a general
representation can be obtained as the tensor product of two ’wall-representations’.
In case of An one simply projects along one side of the diagram onto the other and
vice versa. In the case of Cn, in reference to Figure 7, one has to project vertically
and horizontally, respectively.

One checks easily that there is unitarity at the last possible point, and then the
idea of tensoring with W(03BBsc2) carries over with no changes.

Finally there is the question here of the annihilators being highest weight mod-
ules. We do not prove this here since it seems to involve too many specific features
of the representation theory of u(n) and the only point of doing this would be to
show that this result is independent (or rather, precedes) unitarity. Instead we refer
to [6] where the result is proved using the unitarity. 0
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THEOREM 7.3. Let, as in Section 4, 03B4j = ,1 + ... + yj for j = 1,..., r. Sup-
pose that ht(03B4s)  s - ht(03B30) for some positive integer s. Let so be the smallest
possible s for which the inequality is true. Then a P-type Vw C P of highest weight
w = -n103B41 - ··· - nj8j belongs to Annp- (Ao, Ào) if and only nj  1 for some
j  so. More generally, Vw C Annp-(039B0, 03BB0 + i03BBsc2) ~ nj  1 for some j  s0 + i,
i. e. Annp- (AO, 03BB0 + i03BBsc2) is generated by mso+i.

Proof. Let J( denote the radical of the hermitian form on M(V-r). Let us first look
at Annp- (Ao, 03BB0). Let Vw be a given t-type in P. Combining (27) with Theorem 7.1
we see that

Let us look at the highest weijzhts e that occur in the left hand side. Among these
is the t-type (the ’worst case’ ) whose highest weight is 03C9 + A. Observe that the

highest weight vector for this type is given by qw · 03C5039B where q03C9 is the highest weight
vector of V,,.

Let us take a closer look at q03C9 for 03C9 = -03B4j. It follows from Proposition 5.10
that 8j can be written as a sum of roots falling on a horizontal line in the diagram
(Figure 16). This horizontal line must then intersects C+03B30 for YW to be in the kernel
since otherwise there will be an extremal element in the kernel that gives rise to
a BGG homomorphism and this will have an expression that, in contradiction of
Proposition 6.17, does not intersect C+03B30. If it does, it is clear, by using the invariance
of q-8J under r, (Proposition 5.9), that any other expression of 8j also will intersect
C+03B30. Thus, nj  1 for some j  so is a necessary condition for Vw is contained in
the annihilator.

It remains to prove the converse: For this, it suffices to prove, since the anni-
hilator is an ideal, that if 03C91 = -81 - ... - 8j with j  so, then V03C91 is in the

annihilator. What we can actually show is that VW1 0 V, Ç U(p-)V(A -,0) ç K.
For 10 on a wall this follows easily from the Proposition 6.29. What remains are
then the general cases for su(p, q), sp(n, R), and so*(2n). These can in principle be
handled directly by the representation theory for u(n). However, there is an easier
way, namely by decomposing the general case into a tensor product of representa-
tions on the walls as we did in the case of unitarity. The result then follows from
Lemma 7.4 below.

The higher order annihilators follow analogously - or by the argument in
Joseph’s article [20]. D

LEMMA 7.4. Let mai e Annp-(03C4i) for i = 1, 2. Assume that al + a2 - 1  r.
Then

where 03C41~03C42 is the tensor product as p-representations, and where we more precisely
mean that for any t-type T in Tl 0 T2 (counted with multiplicity), mat+a2-1 E
Annp-(f).
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Proof. W() can be obtained by restricting W(03C41) 0 W(03C42) to the diagonal. The
action of p- through any d UT is by means of differentiation. If pi E W(03C4i), i = 1, 2,
it then follows easily from the ’determinantal’ nature of the mi’s that, suppressing
the representations,

for certain (not interesting) constants cl. More precisely, the action of an ele-
ment of ma1+a2-1 on pl 0 P2 can be written as a linear combination of elements of

ml(p1)~ma1+a2-1-l(p2) for l = 1,..., a1+a2-1.Since either a1 + a2-1-l  al 
or 1 j a2, the claim follows. 

Remark 7.5. From the explicit description of the ideals it follows from well-
known classical results that these ideals are prime. See also the remarks in the
introduction.

Remark 7.6. In the scalar case where 039B0 = 0 it follows easily that the holo-
morphic functions in W ( ( i - 1)03BBsc2), in the unbounded realization of the hermitian
symmetric space, are Fourier-Laplace transforms of distributions supported by a
suitable real part of the variety defined by the p-type mi. Also note that in the
general case, if there is only a single hermitian symmetric space D(03B30) defined by
,0, then the representation of the algebra corresponding to this space, obtained by
restricting the functions, is a scalar representation.
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