@article{CM_1996__100_2_233_0, author = {Schmidt, Alexander}, title = {Extensions with restricted ramification and duality for arithmetic schemes}, journal = {Compositio Mathematica}, pages = {233--245}, publisher = {Kluwer Academic Publishers}, volume = {100}, number = {2}, year = {1996}, mrnumber = {1383466}, zbl = {0873.14027}, language = {en}, url = {http://www.numdam.org/item/CM_1996__100_2_233_0/} }
TY - JOUR AU - Schmidt, Alexander TI - Extensions with restricted ramification and duality for arithmetic schemes JO - Compositio Mathematica PY - 1996 SP - 233 EP - 245 VL - 100 IS - 2 PB - Kluwer Academic Publishers UR - http://www.numdam.org/item/CM_1996__100_2_233_0/ LA - en ID - CM_1996__100_2_233_0 ER -
Schmidt, Alexander. Extensions with restricted ramification and duality for arithmetic schemes. Compositio Mathematica, Tome 100 (1996) no. 2, pp. 233-245. http://www.numdam.org/item/CM_1996__100_2_233_0/
1 Theorie des Topos et Cohomologie Etale des Schemas(SGA4) LNM 269, 270, 305.
, and :2 Etale Homotopy LNM 100 Springer 1969. | MR | Zbl
, :3 Etale homotopy of simplicial schemes Ann. of Math. Studies 104 Princeton Univ. Press 1982. | MR | Zbl
:4 Galois cohomology of algebraic number fields Dt. Verlag der Wissenschaften, Berlin 1978. | MR | Zbl
:5 Etale Cohomology Princeton University Press 1980. | MR | Zbl
:6 Arithmetic Duality Theorems Persp. in Math. 1 Academic Press Boston 1986. | MR | Zbl
:7 Einbettungsprobleme mit lokaler Vorgabe und freie Produkte lokaler Galoisgruppen J. f. reine u. ang. Math. 259 (1973) 1-47. | MR | Zbl
:8 On the fundamental group of a smooth arithmetic surface Math. Nachr. 159 (1992) 19-36. | MR | Zbl
, :9 Cohomologie Galoisienne Lecture Notes in Math. 5 Springer 1964. | Zbl
:10 Letter to Serre in [9]. | Zbl
:11 Dualité dans la cohomologie des groupes profinies in [9].
:12 Class Numbers and Zp-Extensions Math.Ann. 214 (1975) 177-193. | EuDML | MR | Zbl
:13 On Galois groups ofp-closed algebraic number fields with restricted ramification J. reine u. ang. Math. 400 (1989) 185-202 | EuDML | MR | Zbl
: