@article{CM_1995__99_2_153_0, author = {Bertolini, Massimo}, title = {Selmer groups and {Heegner} points in anticyclotomic $\mathbb {Z}_p$-extensions}, journal = {Compositio Mathematica}, pages = {153--182}, publisher = {Kluwer Academic Publishers}, volume = {99}, number = {2}, year = {1995}, mrnumber = {1351834}, zbl = {0862.11043}, language = {en}, url = {http://www.numdam.org/item/CM_1995__99_2_153_0/} }
TY - JOUR AU - Bertolini, Massimo TI - Selmer groups and Heegner points in anticyclotomic $\mathbb {Z}_p$-extensions JO - Compositio Mathematica PY - 1995 SP - 153 EP - 182 VL - 99 IS - 2 PB - Kluwer Academic Publishers UR - http://www.numdam.org/item/CM_1995__99_2_153_0/ LA - en ID - CM_1995__99_2_153_0 ER -
Bertolini, Massimo. Selmer groups and Heegner points in anticyclotomic $\mathbb {Z}_p$-extensions. Compositio Mathematica, Tome 99 (1995) no. 2, pp. 153-182. http://www.numdam.org/item/CM_1995__99_2_153_0/
1 Iwasawa Theory, L-functions and Heegner Points, PhD Thesis, Columbia University, 1992.
:2 Kolyvagin's descent and Mordell-Weil groups over ring class fields, J. für die Reine und Angewandte Mathematik 412 (1990), 63-74. | MR | Zbl
and :3 Derived heights and generalized Mazur-Tate regulators, Duke Math. J. 76 (1994), 75-111. | MR | Zbl
and :4 Derived p-adic heights, submitted.
and :5 Algèbre Commutative, Ch.7, Diviseurs, Hermann et Co., Paris, 1965. | MR | Zbl
:6 Refined Class Number Formulas and Derivatives of L-functions, PhD Thesis, Harvard University, 1991.
:7 Algebraic Number Theory, Academic Press, New York, 1969. | MR | Zbl
and :8 Kolyvagin's work on modular elliptic curves, in L-functions and Arithmetic, Cambridge University Press, Cambridge, 1991, pp. 235-256. | MR | Zbl
:9 Heegner points and derivatives of L-series, Inventiones Math. 84 (1986), 225-320. | MR | Zbl
and :10 Euler Systems, The Grothendieck Festschrift, vol. 2, Progr. in Math. 87, Birkhäuser, 1990, pp. 435-483. | MR | Zbl
:11 Algebra, 2nd edn, Addison Wesley, 1984. | Zbl
:12 Modular Curves and Arithmetic, Proc. Int. Congress of Math., Warszawa, 1983. | Zbl
:13 Rational points of Abelian Varieties with values in towers of number fields, Inventiones Math. 18 (1972), 183-266. | MR | Zbl
:14 Cyclotomic fields and modular curves. Engl. transl.: Russian Math. Surveys 26 (1971), 7-78. | MR | Zbl
:15 Arithmetic duality theorems, in Perspective in Math., Academic Press, New York, 1986. | MR | Zbl
:16 Fonctions L p-adiques, Théorie d'Iwasawa et points de Heegner, Bull. Soc. Math. de France 115 (1987), 399-456. | Numdam | MR | Zbl
:17 Points de Heegner et derivées de fonctions L p-adiques, Inventiones Math. 89 (1987), 455-510. | MR | Zbl
:18 On L-functions of elliptic curves and anti-cyclotomic towers, Inventiones Math. 64 (1984), 383-408. | MR | Zbl
:19 The Main Conjecture, Appendix in S. Lang, Cyclotomic fields, I and II, GTM 121, Springer-Verlag, 1990. | Zbl
:20 The "main conjectures" of Iwasawa theory for imaginary quadratic fields, Inventiones Math. 103 (1991), 25-68. | MR | Zbl
:21 Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Inventiones Math. 15 (1972), 259-331. | MR | Zbl
:22 Abelian l-adic Representations and Elliptic Curves, Advanced Book Classics, Addison Wesley, 1989. | MR | Zbl
:23 WC-groups over p-adic Fields, Séminaire Bourbaki no. 156, 1957. | Numdam | MR | Zbl
:24 Duality theorems in Galois cohomology over number fields, in Proc. Int. Congress of Math., Stockholm, 1962, pp. 288-295. | MR | Zbl
: