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1. Introduction

We discuss the isogenies of prime degree of elliptic curves defined over
algebraic number fields (cf. [Se]). For the field Q of rational numbers,
Mazur [Ma2] solved it, completely. He also solved this problem for

imaginary quadratic fields k and the prime numbers p which remain prime
in k. In the latter case, he showed that for a given imaginary quadratic field
k, there are no isogenies of prime degree p defined over k except for finitely
many prime numbers p as above. An isogeny ~ : E ~ F of degree p
corresponds to a non-cuspidal k-rational point (E, ker(~)) on the modular
curve Xo(p) (cf. [D-R], [Mal,2]). For a given imaginary quadratic field k
of class number one and for a rational prime p which splits or ramifies in
k, we have isogenies of degree p which are represented by elliptic curves
with complex multiplication by ek defined over k. We call a point x on
Xo(p) is a C.M. point if x is represented by an elliptic curve with complex
multiplication. Let 0 be an order of an imaginary quadratic field L, and
H = Ha be the ring class field associated with the order e with degree
h = ho = [H : L] (cf. [Lal]). Then there are h isomorphism classes of elliptic
curves E over H with ring End(E) of endomorphisms isomorphic to e. If a
rational prime p splits or ramifies in L, then E with a level p structure
defines a C.M. point belonging to Xo(p)(H). Therefore, if an algebraic
number field k contains the Hilbert class field HL of an imaginary quadratic
field L, then X o(p)(k) contain non cuspidal points for the primes p as above.
So, we set our problem as follows: Find a finite set S = S(k) of prime
numbers p such that the sets X0(p)(k) consist of the cusps 0 and oo, and
the C.M. points for prime numbers p not belonging to S. For arbitrary
algebraic number field k of finite degree, we classify the non cuspidal
k-rational points on the series of the modular curves Xo(p) into three cases
for the prime numbers p larger than an effective constant.

Let x be a non cuspidal k-rational point on Xo(p) which is represented
by a pair (E, V) for an elliptic curve E and a subgroup V of order p defined
over k (cf. [D-R], §VI, Prop. 2). We denote it by x = (E, V)I,. Let À be the
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character of Gk = Gal(k/k) induced by the Galois action on V(k). Then À
is called the isogeny character of (E, V)lk (cf. [Ma2]), and À 12 is indepen-
dent of the choice of the representative (E, V)/k of x.

THEOREM A. There exists an effective constant Co depending only on k
such that for any prime p &#x3E; Co, the non cuspidal k-rational point on X0(p) is

one of thefollowing three types:

Type 1 03BB12 or (03BB03B8-1p)12 is unramified.
Type 2 À12 = 03B86p and p - 3 (mod 4).
Type 3 k contains an imaginary quadratic field L and its Hilbert class

field HL. The rational prime p splits in L

For any prime q of k prime to p,

For the estimate of the constant Co, see the proof of Theorem 1. For the
case of Type 1, we can apply the result of formal immersion of Kamienny
[Kal, 2] for the algebraic number fields of degree  8. For the case of Type
2 and quadratic fields k, a modification of Goldfeld’s theorem ([Ma2]
Appendix) can be applied.

THEOREM B. Let k be a quadratic field which is not an imaginary quadratic
field of class number one. Then the non cuspidal k-rational points on X o(p)
appear only for finitely many prime numbers p.

For each quadratic field k in Theorem B, the finite set of the exceptional
prime numbers is effectively estimated, except for at most one prime
number. This prime, if exists, concerns with the Siegel’s zero of the

L-functions of quadratic characters (cf. [Ma2] Appendix). Under the
Goldfeld conjecture ([Ma2] Appendix), the case of Type 2 is solved for any
algebraic number field of odd degree (cf. Theorem 6). The k-rational points
of Type 3 are expected to be the C.M. points for almost all prime numbers
p. But, even for the imaginary quadratic field k of class number one, we
have not solved this case. We add a result under a strong condition on
reduction. The classification of algebraic points on Xo(p)’s can be applied
to some other cases. The condition on the reduction as above is satisfied
for the fine objects of the Shimura curves over Q etc. of Type 3. We will
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describe the results for the fine objects of the Shimura varieties in the next
paper.

NOTATION. For a fractional ideal a of an algebraic number field k of
finite degree, N(a) as its norm NklQ(a) and Ik(a) (resp. Pk(a)) is the ideal

group consisting of the ideals (resp. principal ideals) prime to a. For a finite
extension k of Q or Qp, Ok is the ring of integers of k, and for a prime ideal
q of ok, K(q) = Ok/q. For an elliptic curve E over k, E/ok is the Néron model
of E over Spec ok.

2. Classification of algebraic points

For each prime number p  5, let X o(p) be the modular curve over Q
which is associated with the elliptic modular group ro(p). The affine open
subscheme X0(p)B{cusps 0, ~} is the coarse moduli space of elliptic curves
E with a cyclic subgroup V of order p (cf. [D-R]). For any field k of
char(k) ~ p, any non cuspidal k-rational point x is represented by a pair
(E, V) defined over the field k (cf. [D-R], §VI, Prop. 3.2). Let k be an
algebraic number field of finite degree, and x = (E, V)/k be a non cuspidal
k-rational point on Xo(p). Denote by 03BB the isogeny character which is

induced by the Galois action on V(k) :

03BB : Gk = Gal(k/k) - Aut V(k) = F p .

The character À 12 is unramified outside of Supp(p) (cf. [Mf] p. 46). The
character À n is independent of the choice of the representative (E, V)I, for
n = lAutc(E, V)l (n = 2,4 or 6, and n = 2 unless the modular invariant

j(E) = 0 or 1728). Denote also by 03BB12, the corresponding character of the
ideal group 1 k(p) consisting of the ideals of k prime to p. By the classifica-
tion of the finite flat group schemes (cf. [O-T], [Ral]) and the theory of
the Tate models, we have the following lemma. This lemma is also valid
even if the rational prime p ramifies in k.

LEMMA 1. Assume that k is a Galois extension of Q and that the rational
prime p is unramified in k. Then for a fixed prime p of k lying over p, we have
integers an, 0  a03C3  12, for 6 E Gal(k/Q) such that

À 12«a)) ~ aF (mod p)

for e = 03A303C3 a03C3 03C3 and 03B1 ~ k  prime to p.
Proof. We denote also by 03BB12 the character of the idèle group of k which

corresponds to the character 03BB12 of the ideal group I k(p). We may assume
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p  5. Let % be a prime of k lying over the rational prime p, and 03BB03B2 be the
restriction of ). to the group of units of k03B2. Denote by F the maximal
unramified extension kunr03B2 of k03B2. Then E ~ F has semistable reduction over
a cyclic extension K of degree e dividing 12 (cf. [Mf] p.46). Using the
classification of the finite flat group schemes (cf. [O-T], [Ral]) and the
Tate module (cf. loc. cit.), we see that

for a positive divisor a03B2 of 12. Rewriting it in the classical form, we get this
lemma.

REMARK 1. The integers a,, 1 s take the values 0, 12; 4, 8 (only if the modular
invariant j(E) ~ 0 (mod p) and p ~ 2 (mod 3)); 6 (only if j(E) == 1728 (mod p)
and p ~ 3 (mod 4) (cf. [Mal], Chap. 3; [Ma2]).

REMARK 2. Let wp be the fundamental involution of XO(p) defined by

Then, for the point w p(x) = (E/V, E[p]/V), the isogeny character is 2 = 03B8p03BB-1
for the cyclotomic character 9p (cf. loc. cit.). The corresponding sum is

Let q be a prime of k prime to p (p  5), and F be a finite extension of kq. 
If 03BB is unramified over F, then E (8) F has semistable reduction (cf. [S-T],
[SGA7]). Hence, we can take the field F as a cyclic extension of kq of degree
e dividing 12 (cf. [Mf] p. 46). We first consider the case when E (D F has good
reduction. Let 6, be the special fibre of the Néron model of E ~ F over Spec OF.
Take an element a E k with 03B1ok = qh for the class number h = hk of k. Under
the same notation e as Lemma 1,

a£ + aE - tr(Frob12h) (mod p),

for the Frobenius map Frob on E,,. By the Riemann-Weil condition (see e.g.,
[Lal], [Mf]), there exists a constant C depending only on k such that for all
the primes p &#x3E; C,

for a root f3 of Frob on E,,. Therefore the assumption of the following lemma
is satisfied for the prime numbers p &#x3E; C.
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LEMMA 2. Under the same notation and the assumption as Lemma 1, take a
rational prime q, q * p, which splits completely in k. Take a prime q of k lying
over q, and an element a E k ’ with 03C3ok = q’ for the class number h = hk of k.
Assume that

for a root 03B2 of the Frobenius map of an elliptic curve defined over Fq. Then e is
one of the following forms :

Type 2 e = 6Nk/Q and p - 3 (mod 4).
Type 3 k contains the imaginary quadratic field L = Q(03B2), and

for the complex conjugation p of L. Further, if p  13 or p = 7, the
rational prime p splits in L

Proof. The field L = Q(03B2) is an imaginary quadratic field, so that a8 is a

rational number or L = Q(03B103B5). We first discuss the case when a8 is a rational
number. The principal ideal (a8) = qh8 is equal to (q)r for an integer r, and for
the rational prime q which splits completely in k. Then r = 6h and e = 6Nk,Q.
In this case, a03C3 = 6 for any (1, hence p ~ 3 (mod 4) (cf. Remark 1). Now assume
that L = Q(a8) is an imaginary quadratic field. The ideal (a8) = qh03B5 is GL =

Gal(L/L)-invariant, so that e = Nk/L. (a + bp) for some integers a, b, 0  a,
b  12. Then qf - rarb for r = Nk/L(q), and q8 = (03B212). Hence, (a, b) = (12, 0) or
(0, 12). The remaining statement follows from the fact that the character is
F p-valued and the rational prime p is unramified in the field k.

REMARK 3. In the latter case of Type 3 of the above proof, the ideal r is the
principal ideal (03B2) or (03B2).

Let q be a prime of k prime to p. If E Q kq has potentially multiplicative
reduction, then 03BB(03C3q)2 = 1 or N(q)2 (cf. [Mf] p. 46, [Ri]). Now, we can classify
the k-rational points on Xo(p) by the type of the characters 03BB12. For a given
algebraic number field k of finite degree, and all prime numbers p larger than
an effective constant Co = Co(k), we can classify the k-rational points on the
modular curves Xo(p) into three types. For the estimate of the constant Co, see
the proof of Theorem 1.

THEOREM 1. Let k be an algebraic number field offinite degree. There exists
an effective constant Co = Co(k) such that for any prime number p &#x3E; Co, the
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associating character 03BB12 of any non cuspidal k-rational point on the modular
curve X o(p) is one of the following three types:

Type 1 Â12 or (Âop1)12 is unramified.
Type 2 À12 = 03B86p and p = 3 (mod 4).
Type 3 k contains an imaginary quadratic field L and it also contains the

Hilbert class field HL of L. The rational prime p splits in L

For an y prime q of k prime to p,

for any a E k" with aeL = Nk/L(q).
Proof. We may assume that the rational prime p is unramified in k and

p  13. Let K be the Galois closure of the extension k of Q. Let x = (E, V)lk be
a non cuspidal k-rational point on Xo(p) with the isogeny character Â, and
e = 03A303C3a03C303C3 be as in Lemma 1. If r, = 0 or 12Nk/Q, then 03BB12 is of Type 1. We

discuss the other cases, so 03A3 a03C3 ~ 0, 12d for d = [k : Q]. Take a rational prime
q, q =1 p, which splits completely in K, and take a prime q of K lying over q. If
the K-rational point x has potentially multiplicative reduction at the prime q,
then

(cf. [Mf] p. 46, [Ri]). Let hK be the class number of K, and take an element
a e K " with 03B1oK = qhK . There are only finitely many prime numbers p which
divide

Therefore, we may assume that the K-rational point x has potentially good
reduction at q. If 8 is not of the Type 2, 3 of Lemma 2, then

for any root 03B2 of the Frobenius map of any elliptic curve over K(q) = Fq. Then,
there are only finitely many prime numbers p which divide a nonzero rational
integer
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for a root 03B2 as above. Now, we discuss the cases of Type 2 and 3 of Lemma 2
for the Galois closure K of the extension k over Q. In the case of Type 3, the
rational prime p splits in L; POL = pp. Changing p by p, if necessary, we may
assume that 03BB12 is unramified at the primes of K lying over p and it ramifies
at the primes of K lying over p. Then for any 03B1 ~ (k · L) ’ prime to p,

The character 03BB12  NkL/L is unramified outside of Supp(p) and ramifies at the
primes lying over p, so that k contains L. Then, for any a E k " prime to p (or
to p in the case of Type 3),

Let M = M(k) be the set of rational primes q which split in k and are prime
to 6h for the class number h = hk of k. Let N = N(k) be the set of the primes
q of k lying over the rational primes q in M. Further, take a finite subset S of
N such that (S mod Pk) generates the ideal class group CI = Iklpk of k. It

suffices to discuss the case for the prime numbers p prime to any prime q in S.
By the same argument as above, we may assume that the k-rational points of
Type 2 and 3 are all potentially good reduction at any prime q in S for the
prime numbers p larger than an effective constant which depends only on k.
Further, we may assume that for each prime q in S and « ~ k  with aOk = qh,

for a root fl = 03B203B1 of the Frobenius map of an elliptic curve over K(q) = Fq
(for the prime numbers p larger than the constant as above). In the case of
Type 2, P = 03B6-q for a l2ht" root C of unity. The prime q in S does not
divide 6h and Q(03B2) is an imaginary quadratic field, so that

Thus,

With the congruence (1), this gives the result for the case of Type 2. In the
case of Type 3, the relation (2) gives the equalities of ideals that
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Then

which is a principal ideal of L. By our assumption, (S mod Pk) generates the
ideal class group Ck of k, so that Nk/L(Ik) is contained in the principal ideal
group PL of L. Then, by the class field theory (cf. [La2]), k contains the
Hilbert class field HL of L. If 03B212h = 03B312h for a root y of the Frobenius map
of an elliptic curve over 03BA(q) = F., then y = Çfl for a 12hth root ( of unity.
As the prime q does not divide to 6h, so that 03B6 belongs to the imaginary
quadratic field L. Then,

With the congruence (1), this gives the result for the case of Type 3.

3. Algebraic points of Type 1

Kamienny [Kal] solved the problem of the p-torsion points on elliptic
curves over quadratic fields. It leads the complete result of the problem of
torsion points on elliptic curves over quadratic fields (cf. [Kel,2], [Mo],
[K-Mo]). Kamienny’s idea is a generalization of Mazur’s formal immersion
at the cuspidal section oo ([Ma2]). He also proved the formal immersion at
the cuspidal section (~, ... , oo) for the cases of degree  8 ([Ka2], [K-M]),
and solved the problem of the p-torsion points on elliptic curves over the
algebraic number fields of degree  8. Abramovich [Ab] improved it and
solved this problem for the algebraic number fields of degree  12. These
results solve the case of Type 1 for algebraic number fields of degree  12.
We first explain the formal immersion of Kamienny (cf. loc. cit.). Let X(n)

be the n th symmetric product of the modular curve X = Xo(P):

where Sn is the symmetric group of n-letters. Let f(n) be the morphism of X(n)
to the jacobian variety J = Jo(p) of X o(p) defined by the following morphism
of n th product of X to J:
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Then f(n) induces naturally the morphism q(n) of X(n) to the Eisenstein quotient
J = Jo(p) ([Mal]). Let X/z = XO(p)lz be the modular curve over Z associated
with Xo(p) (cf. [D-R]), and X(n)/z be the symmetric nth product of X/z and
Xsmooth(n)/z be the smooth part (/Z) of X(n)/z. Then J(n), g(n) induce naturally the
morphisms f(n) and g(n) of Xsmooth(n)/Z to the Néron models J/z and J/z, respectively.
For the prime numbers q &#x3E; n, q ~ p,

and for the prime number q = p &#x3E; n,

where Xfz is the open subscheme of X/z obtained by removing the super-
singular points of characteristic p (cf. [D-R]).

THEOREM 2 (Kamienny, Abramovich). For each integer n  12, there exists
prime numbers Pen) and q(n) such that Yen) Q Zq is a formal immersion at the
cuspidal sections (oo, ... , oo) and (0, ... , 0) for any prime numbers p  Pen) and
q  q(n).

REMARK 4. For n = 1, p(l) = 17, q(l) = 3 and for n = 2, p(2) = 73, q(2) = 7

([Kal],[Ma2]). For the other cases 3  n  12, the known estimates of Pen) and

q(n) are not fine enough (cf. [K-M], [Ab]).

Let k be an algebraic number field of degree n  12, and x be a non cuspidal
k-rational point of X o(p). Then x defines a Q-rational point x(n) = {x03C3|03C3:k  Q}
on X(n), which is not the cuspidal sections (oo, ... , oo) nor (0, ... , 0).

COROLLARY 1 (Kamienny, Abramovich). Under the same notation as above,
for n  12, if p  Pen) and q  q(n), then

REMARK 5. For a positive integer n, denote by S(n) the set of torsion primes
(cf. [K-M]), i.e., for any prime p in S(n), there is an isogeny of prime degree p
over an algebraic number field of degree not greater than n. Kamienny and
Mazur (loc. cit.) showed that the set S(n) is of (natural) density zero.

Now we can show the result for the case of Type 1.

THEOREM 3. Let k be an algebraic number field of degree  12. Then there
exists an effective constant C depends only on k such that X0(p)B{0, ~} has no
k-rational points of Type 1 for any prime number p &#x3E; C1.
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REMARK 6. For a given algebraic number field k, it is easy to estimate the

constant Cl, see the proof of Theorem 3.

Proof. Take prime numbers p  p(,,) and q  q(n) with q ~ p. We may assume
that p  5 and the rational prime p is unramified in k. Let x = (E, V)lk
be a non cuspidal k-rational point on X o(p) of Type 1. Changing x by wp(x) =
(E/V, E[p]/V), if necessary, we may assume that 03BB12h = 1 for the class number
h = hk of k (cf. Remark 2). By Corollary 1, there exists a prime q of k lying over
the rational prime q such that x Q K(a) is equal to 0/03BA(q) or a non cuspidal point
over K(q). In the first case, E has potentially multiplicative reduction at q, and
the restriction of 03BB to the inertial subgroup 7q of q is ± 03B8p (cf. [D-R]). Then,

so that p - 1 divides 12h. In the latter case, the elliptic curve E has potentially
good reduction at q. Then, for a root fi of the Frobenius map of an elliptic
curve over K(q),

The absolute value of R.H.S.  2N(q)"(, by the Riemann-Weil condition (cf.
[Lal], [Mf])), so that the prime numbers p &#x3E; (N(q)6" - 1)’ do not satisfy the
above congruence.

REMARK 7. For an algebraic number field k of finite degree, denote by T(k)
the set of prime numbers p such that the modular curves X o(p) have non trivial
k-rational points of Type 1. The result on the torsion primes [K-M] (cf.
Remark 5) shows that this set T(k) is of (natural) density zero.

4. Algebraic points of Type 2

Let x = (E, V)lk be a k-rational point on X o(p) of Type 2, and be its
isogeny character as in Theorem 3. We first prepair several lemmas.

LEMMA 3. The isogeny character À is of the form

for an integer m with 2m ~ p + 1/2 (mod p - 1), and a character 03C8 of order
dividing 6.

Proof. Put 03C8 = À8;m, then 03C812 = À 128;6 = 1. Since p ~ 3 (mod 4), tjJ6 = 1.

LEMMA 4. Let q be a prime of k lying over a rational prime q, q ~ p. If E
has potentially multiplicative reduction at q, and the rational prime q splits in
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the imaginary quadratic field Q(-p), then

Proof. In this case, 03BB(03C3q) == + 1 or + N(q) (mod p) (cf. [Mf] p. 46). Then,
by Lemma 3 and the assumption of this lemma,

LEMMA 5. Let q be a prime of k lying over a rational prime q, q =1= p.
Suppose that E has potentially good reduction at q, and that q is of odd degree
and N(q)  p/4. Then the rational prime q remains prime in Q(-p).

Proof. By Lemma 3,

for a root 03B2 of the Frobenius map of an elliptic curve over 03BA(q) = ok/q and
a 6th root t/1( a q) of unity. If the rational prime q splits in Q(-p), then

Then the Riemann-Weil condition: |03B2 + 03B2|  2 N(q) (cf. [Lal], [Mf])
and the assumption: N(q)  p/4 lead that P + 03B2 = ± 2N(q) or ±N(q),
which contradicts that 03B2 + 03B2 is a rational integer and q is of odd degree.

For quadratic field k, we make use of a Goldfeld’s theorem ([Ma2]
Appendix). We first explain his conjecture ([Ma2]). For an algebraic
number field L, denote by DL the discriminant of L.

CONJ ECTU R E (Goldfeld). For any algebraic number field k of finite degree,
there are only finitely many quadratic fields L which satisfy the condition that
any rational prime q  IDLI14 does not split in the composite k · L.

Goldfeld (loc. cit.) proved this conjecture for quadratic fields k. The

discriminants DL of the exceptional quadratic fields L are effectively
estimated, except for at most one L (cf. loc. cit). In our case, the condition
C below is satisfied for any algebraic number field k of finite degree by
Lemmas 3, 4 and 5.

CONDITION C. Any rational prime q with q  p/4 does not split in

k(-p), unless q2 + q + 1 = 0 (mod p).
For a quadratic field k, we cannot apply the above Goldfeld’s theorem

to our case, directly. But, a slight modification solves our problem. His
proof admits at most two exceptional primes q with 2  q  p/4.
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PROPOSITION 1. For any quadratic field k, there are only finitely many
prime numbers p which satisfy the condition C.

Proof. We explain here the modified parts of the Goldfeld’s proof. Let S
be the set of rational primes which ramify in k. It is enough to consider the
prime numbers p &#x3E; IDkl. Let K = k(,,I-p), and

for the zeta function (K(s) of K, and the Riemann zeta function 03B6(s). For
t &#x3E; 0 and an integer r  5, let

Then, Goldfeld ([Ma2] Appendix) showed that

for the constants cl, C2 and c, depending only on k, and the positive
constants c4 and cs depending only on k and any given positive number E,
and for a function g(t) = O(t) which depends only on k. The last inequality
as above is valid, except for at most one prime number p (see loc. cit). The
condition C leads that F(p) = G(p) or

for a prime number q with q  p/4 and q2 + q + 1 = 0 (mod p). In the

latter case, except for at most one prime number p,
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Taking a positive number s with 0  03B5  1 16, we get the result.

Proposition 1 and Lemmas, 3, 4 and 5 give the following Theorem 4.

THEOREM 4. For any quadratic field k, the k-rational points on Xo(P) of
Type 2 appear only for finitely many prime numbers p.

REMARK 8. K. Murty taught me that the G.R.H. leads Goldfeld conjec-
ture. In fact, G.R.H. implies that Condition C is satisfied only for finitely
many prime numbers p for a given algebraic number field k of finite degree.
For any algebraic number field k of finite degree, we may expect that the
modular curves Xo(p) have no k-rational points of Type 2 for almost all
prime numbers p.
We show that the assumption of the Goldfeld conjecture is satisfied for

algebraic number fields of odd degree (cf. Condition C). We first study the
Mordell-Weil group of the jacobian variety J = Jo(p) of the modular curve
Xo(p). Let

be the subring of End(J) generated by the Hecke operators T for prime
numbers 1, l ~ p, and the automorphism wp defined by the fundamental
involution of Xo(p). Then End(J) (D Q is a product of totally real algebraic
number fields of finite degree, and the index [End(J) : T] is finite (see [Ri],
[Mal] Chap. 2). Let Y be the Eisenstein ideal generated by ~l = Tl - 1 - 1

for all prime numbers 1, l ~ p, and wp + 1. Then

for the numerator n of (p - 1)/12 ([Mal]). Let

The quotient J is called the Eisenstein quotient of J. Let j : J - J be the
natural map, and C = cl((0) - (~))&#x3E; be the cuspidal subgroup of J. Then

and j maps isomorphically the cuspidal subgroup C onto the Mordell-Weil
group
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(see loc. cit.). For an abelian variety B over Q, and a subring R of Q not
containing 1/p, let B/T = BIR be the Néron model of B over the base
T = Spec R, and B., be the special fibre of B/T at s = Spec Fp, and Bs be its
connected component of the unit section. Further, denote by B° the open
subgroup scheme of Bls which is obtained by removing the connected
components of Bs other than Bs. Let

which are T-modules. Then we know that

where Cs = C ~ Fp (loc. cit). For each prime ideal q of T, let Tq =

lim T/qmT.
PROPOSITION 2. For any prime ideal q over J, M° ~ Tq = {0}.

Proof. It follows from the facts that M° ~ Tq is of finite order, and M° is
a free Z-module ([Mal] Chap. 3, Th. 3.1, Lemma 3.3).

Let A~ = Pico(A), J " = J and ~ be the dual abelian varieties, and

be the natural exact sequence. Let

be the dual exact sequence, and

which is a finite subgroup. For a finite subgroup V of J over Q, denote by
V/S’ the flat closure of V in the Néron model Jls, for S’ = Spec Z[1/2] (cf.
[Ra2]).

LEMMA 6

(1) For each prime ideal q over l, D Q Tq = {0}.
(2) Dls, is contained in Jo/S’.
(3) 0 ~ Dls, - Jo/S’ ~ o/S’ x A~o/S’ ~ 0 is exact.

Proof. The first statement (1) follows from the fact that the natural map
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is an isomorphism (see [Mal] Chap. 3, Cor. 1.4). The natural map of J
onto J x A~ is an isogeny with kernel D. Then kernel of the induced map
~ of J/S’ to J/s’ x Ais, is contained in Jls,[N] for an integer N  1.
Applying the specialization lemma of finite flat group schemes (cf. [Ra2],
[Ma2]) to the finite part D§, (loc. cit), we see that the quasi-finite flat
subgroup scheme Dls, is the kernel of the induced map ~. Let Gr(D) be the
graded module of D as T-module. Then by (1), Gr(D) Q Tq = {0} for any
prime q over I. The quotient group JS/Js is naturally isomorphic to the
cuspidal subgroup C as T-module. This proves (2) and (3).

THEOREM 5

Proof. By Lemma 6(1) and (3), we have the long exact sequence

For each prime ideal q over I, by Proposition 2 and Lemma 6(1), we get

While (Z) = J(S’) = J(Q) = C as T-modules. This gives the result.

COROLLARY 2

(3) The image of As in J, is contained in Js.

Proof. Lemma 6 gives (2) and (3), directly. Then M° is contained in A(Q),
and M° E9 C = M = A(Q) E9 C ([Mal] Chap. 3). This shows (1).

We now discuss the algebraic points of Type 2. Let k be an algebraic
number field of degree d, and K be its Galois closure over Q. Let

x = (E, V)lk be a k-rational point on X o(p) of Type 2. Assume that p is
unramified in k and p  5. Then p ~ 3 (mod 4), and the special fibre

x 0 03BA(p) is a section of the supersingular point with modular invariant =
1728. Let X/z = X o(p) /z be the canonical model of X o(p) over Z, and X be
the minimal model of X = X o(p) over Z (cf. [D-R]). Then natural mor-
phism
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is obtained by blowing up at the supersingular point(s) of characteristic p
with modular invariant = 1728 (and 0 if p - 2 (mod 3)). Denote by F the
fibre over the supersingular point with modular invariant = 1728. Let 13 be
a prime of K lying over the prime p. Then x" defines the section of the
minimal model X whose special fibre at 13 is a section of F - {nodes} (see
[D-R] [Ma2]). Let

be the generator of the cuspidal subgroup C. Let

be the Q-rational point of the jacobian variety J = Jo(p) for the embed-
dings a of k into K. We dénote by f(x)s etc. the special fibre at s = Spec Fp.
Let j : J - J be the natural map, and g(x) = j(f(x)).

LEMMA 7. Assume that p is unramified in k. Then, for d = [k : Q]

Proof. Let o03B2 be the ring of integers of K’.p. The construction of the Néron
models commutes with the étale base change Spec o03B2 - Spec Zp (cf. [Ra2],
[SGA7]). The quotient group JS/Js is described by the vertical divisor
group of 9i at p and the intersection matrix (cf. [Ma2] Appendix, [Ra2]).
Then an elementally calculation gives the result.

For a rational prime q, let e(q) be the maximal value of the ramification
indices of all primes of K lying over q.

LEMMA 8. Let q be a rational prime with

and q be a prime of K lying over q. Assume that p is unramified in k, and that
the special fibres of x" at q are all cusps, and dl of them are the 0 cusps, and
d2 = d - dl are the oo cusps, then

Proof The special fibre f(x)/1B(q) = d1P/03BA(q). The cuspidal subgroup j(C) =
J(Q) is a finite group of order n = num((p - 1)/12) ([Ma2]). Then lemma
follows from the specialization lemma (cf. loc. cit. [Ral]).
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PROPOSITION 3. Assume that p is unramified in k and p &#x3E; 12d + 1 for
d = [k : Q] and that x/03BA(q) are cusps for all primes lying over a rational prime
q, q &#x3E; d. Then the degree d is even.

Proof. Under the same notation of Lemma 8, by Corollary 2 and
Lemmas 7 and 8, dl - d2 == 0 (mod(p - 1)/12). Then by our assumption
on p, d1 = d2.

PROPOSITION 4. Let k be an algebraic number field of odd degree. Under
the Goldfeld conjecture [Ma2], the k-rational points on X o(p) of Type 2 exist
only for finitely many prime numbers p.

Proof. By Lemma 5 and Proposition 3, the assumption of Goldfeld
conjecture is satisfied.

5. Algebraie points of Type 3

For a given algebraic number field k of finite degree, the k-rational points of
Type 3 are excepted to be the C.M. points for large prime numbers p. We
discuss this case under a strong condition on reduction at primes. Let
x = (E, V)/k be a k-rational point on Xo(p) of Type 3 with the isogeny
character 03BB. For our problem, it suffices to discuss the case when p  5 and
the modular invariant j(x) = j(E) =1 0, 1728. Then ).2 is independent of the
choice of the representative (E, V)/k of x. Let L, HL and p be as in Theorem 3
for this x. Then, for any ideal q of k prime to p, and oc E L’ with 03B1oL = Nk/L(q),

Let 03B6 be a primitive 12th root of unity, and L’ = L(03B6), and take a prime 13
of L’ over p. Then we can lift 03BB uniquely to a (primitive) L’ " -valued Hecke
characters 9. of Type A0 of k:

for a E k " with a ~ 1 (mod c03BB). Denote by k03BB the class field of k which

corresponds to the ideal group

Then there exists an elliptic curve which has complex multiplication by oL
over k’ and whose 1-adic representations are induced from qJ). 0 Nk03BB/k (cf.
[Lal]). Now take an elliptic curve EL with complex multiplication bY eL over
the class field HL, and denote by 9L its associating Hecke character. Denote
by w(L) the number of the roots of unit of L.
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LEMMA 9. If p  5 and the modular invariant j(x) ~ 0, 1728, then

(1) k03BB is independent of the choice of the representative (E, V)/k of x.
2 (~ 03BB  N kÂ/k)W(L) = (~L  Nk03BB/HL)w(L).

Proof. Let (E’, V’)Ik be another representative of x with isogeny character À’.
Then 03BB’ = 03BB ~ ~ for a character x with ~2 = 1, since Aut(E) = { ± 11. Then
~03BB’ = ~03BB ~ ~, so that k03BB’ = k03BB. For any ideal a of k’ prime to the conductors of
~03BB and 9L, the principal ideals ~03BB(Nk03BB/k(a))oL = ~L(Nk03BB/HL(a))oL.
COROLLARY 3. If k¡ = k and w(L) = 2, we can choose a representative
(E, V)lk of x whose associating Hecke character is ~L  Nk/HL.

Let ÙL be the minimal class field of L such that ~L o NL/HL is unramified,
and kL = k · L. Then the chosen elliptic curve EL has everywhere good
reduction over HL. Let e(p) be the maximal value of the ramification indices
of the primes 13 of kL lying over the rational prime p.
LEMMA 10. Assume that p  5, 6e(p)  p - 1, k03BB = k and w(L) = 2. Let
(E, V)lk be the representative of x as in Corollary 3. Then E has everywhere
semistable reduction over kL.

Proof. The isogeny character of (E, V)/kL is qJL 0 NILIHL (mod p), which is

unramified outside of Supp(p) and p  5. Then E/kL has semistable reduction
outside of Supp(p) (cf. [Mf]). Let i3 be a prime of kL lying over p, and R be
the ring of integers of (kL)03B2. We first consider the case when 03B2 divides p. The
finite group V/kL extends to a finite étale group scheme V over R. By the
universal property of the Néron model (cf. [SGA7], [Ra2]), the embedding
YkL  ElkL extends to a morphism V ~ EIR. Since e(p)  p - 1, the specializ-
ation lemma of finite flat group schemes (cf. [Ra1], [Ma2]) shows that the

EIR (8) 03BA(03B2) contains the étale group V Q 03BA(03B2). E has semistable reduction over
extension K of degree  6, and the natural morphism of EIR Q (9K to E/OK sends
isomorphically, since 6e(p)  p - 1. Then EIR is semistable (cf. [Mf] p. 46). For
the prime i3 dividing the prime p, applying the same argument to (EIV)IkL’ we
see that (EIV)IR is semistable, hence EIR is semistable.
The elliptic curves with complex multiplication have everywhere potentially

good reduction. The Kamienny’s result for quadratic fields L [Kal] shows that
any L-rational point on Xo(p) (for p  73) has potentially good reduction at
remain primes q, q  7. But, we have a little information for splitting primes.
We here add a strong condition on the reduction. Let S be a finite set of primes
of k, and L be an imaginary quadratic field whose Hilbert class field HL is
contained in the given algebraic number field k. For a positive constant C, let
M(k, L, C, S) be the set of k-rational points x on the modular curves X0(p) of
Type 3 for prime numbers p  C which satisfy the conditions below:

(1) x has potentially good reduction outside of S.
(2) The associating Hecke character is L -valued.
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PROPOSITION 5. If L is not either of Q(.J-1 ) or Q(-3), then for a
constant C, M(k, L, C, S) consists of C.M. points.

Proof. Choose a constant C’  5 such that any rational prime  C’ does not
ramify in the field kL of Lemma 10. By Lemma 10, any point x in M(k, L, C, S)
is represented by an object (E, V)lk such that Elk, has everywhere semistable
reduction, and good reduction outside of S. There are only finitely many such
elliptic curves E/kL up to isomorphism over kL (cf. [Fa] Chap. 5, [C-S] Chap.
2). If E does not have complex multiplication, then E does not have any cyclic
subgroup of order p over k for large p ([Se]).

For a finite set S of primes of k, denote by X o(p)(k, S) the subset of X0(p)(k)
consisting of the points which have potentially good reduction outside of S.

COROLLARY 4. For a constant C, the k-rational points in Xo(pXk, S) of Type
3 are the C.M. points for the prime numbers p with p &#x3E; C, p ~ 11 (mod 12).

Proof. Let x be a k-rational point on X o(p) of Type 3, and 03BB, L and ~03BB be as

before. Then the rational prime p splits in L, and 9. is L«(m) x -valued for a
primitive m = (12, p - 1)th root of unity. If p ~ 11 (mod 12), then L =

Q(,/--1), Q(-3) and m = 2.
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