Torsion points on the modular jacobian J 0 (N)
Compositio Mathematica, Tome 96 (1995) no. 2, pp. 149-172.
@article{CM_1995__96_2_149_0,
     author = {Lorenzini, Dino J.},
     title = {Torsion points on the modular jacobian $J_0(N)$},
     journal = {Compositio Mathematica},
     pages = {149--172},
     publisher = {Kluwer Academic Publishers},
     volume = {96},
     number = {2},
     year = {1995},
     mrnumber = {1326710},
     zbl = {0846.14017},
     language = {en},
     url = {http://www.numdam.org/item/CM_1995__96_2_149_0/}
}
TY  - JOUR
AU  - Lorenzini, Dino J.
TI  - Torsion points on the modular jacobian $J_0(N)$
JO  - Compositio Mathematica
PY  - 1995
SP  - 149
EP  - 172
VL  - 96
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1995__96_2_149_0/
LA  - en
ID  - CM_1995__96_2_149_0
ER  - 
%0 Journal Article
%A Lorenzini, Dino J.
%T Torsion points on the modular jacobian $J_0(N)$
%J Compositio Mathematica
%D 1995
%P 149-172
%V 96
%N 2
%I Kluwer Academic Publishers
%U http://www.numdam.org/item/CM_1995__96_2_149_0/
%G en
%F CM_1995__96_2_149_0
Lorenzini, Dino J. Torsion points on the modular jacobian $J_0(N)$. Compositio Mathematica, Tome 96 (1995) no. 2, pp. 149-172. http://www.numdam.org/item/CM_1995__96_2_149_0/

[BLR] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron Models, Springer Verlag, 1990. | MR | Zbl

[Edi1] B. Edixhoven, Minimal resolution and stable reduction of X0(N), Ann. Inst. Fourier 40, 1 (1990),31-67. | Numdam | MR | Zbl

[Edi2] B. Edixhoven, L' action de l'algèbre de Hecke sur le groupe des composantes des Jacobiennes des courbes modulaires est "Eisenstein", in Astérisque 196-197 (1991), 159-170. | MR | Zbl

[Kat] N. Katz, Galois properties of torsion points on abelian varieties, Inv. Math. 62 (1981), 481-502. | MR | Zbl

[K-M] N. Katz and B. Mazur, Arithmetic moduli of elliptic curves, Princeton University Press, 1985. | MR | Zbl

[Lin] S. Ling, Congruences between cusps forms and the geometry of Jacobians of modular curves, Math. Ann. 295 (1993), 111-133. | MR | Zbl

[L-O] S. Ling and J. Oesterlé, The Shimura subgroup of J0(N), in Astérisque 196-197 (1991), 171-203. | MR | Zbl

[Lor1] D. Lorenzini, Arithmetical graphs, Math. Ann. 285 (1989), 481-501. | MR | Zbl

[Lor2] D. Lorenzini, Jacobians with potentially good l-reduction, J. Reine Angew. Math. 430 (1992), 151-177. | MR | Zbl

[Lor3] D. Lorenzini, The characteristic polynomial of a monodromy transformation attached to a family of curves, Comment. Math. Helvetici 68 (1993), 111-137. | MR | Zbl

[Lor4] D. Lorenzini, On the Jacobian of the modular curve X 0(N), Preprint (1993).

[Man] Y. Manin, Parabolic points and zeta functions of modular curves, Math. USSR Izvestija 6 (1972), n° 1. | Zbl

[Maz] B. Mazur, Modular curves and the Eisenstein ideal, Publ. I.H.E.S. 47 (1977), 33-172. | Numdam | MR | Zbl

[Ma-Ra] R. Mazur and M. Rapoport, Behavior of the Néron model of the Jacobian of X0(N) at bad primes, Publ. I.H.E.S. 47 (1977), 173-185.

[Ogg1] A. Ogg, Rational points on certain elliptic modular curves, Proceedings of Symposia in Pure Mathematics 24, American Mathematical Society, 1973. | MR | Zbl

[Ogg2] A. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449-462. | Numdam | MR | Zbl

[Pou] D. Poulakis, La courbe modulaire X0(125) et sa jacobienne, J. Number Theory 25 (1987), 112-131. | MR | Zbl

[Ray] M. Raynaud, Jacobienne des courbes modulaires et opérateurs de Hecke, in Astérisque 196-197 (1991), 9-25. | MR | Zbl