@article{CM_1995__95_3_247_0, author = {Schmidt, Thomas A. and Sheingorn, Mark}, title = {On the infinite volume {Hecke} surfaces}, journal = {Compositio Mathematica}, pages = {247--262}, publisher = {Kluwer Academic Publishers}, volume = {95}, number = {3}, year = {1995}, mrnumber = {1318087}, zbl = {0838.30039}, language = {en}, url = {http://www.numdam.org/item/CM_1995__95_3_247_0/} }
Schmidt, Thomas A.; Sheingorn, Mark. On the infinite volume Hecke surfaces. Compositio Mathematica, Tome 95 (1995) no. 3, pp. 247-262. http://www.numdam.org/item/CM_1995__95_3_247_0/
[Be] The Geometry of Discrete Groups. Graduate Texts in Mathematics 91 (New York: Springer-Verlag) 1983. | MR | Zbl
,[Bu] Geometry and Spectra of Compact Riemann Surfaces. Progress in Mathematics 106 (Boston: Birkhäuser) 1992. | MR | Zbl
,[C] Rigidity for surfaces of non-positive curvatures, Comm. Math. Helv. 65 (1990) 150-169. | MR | Zbl
,[CF] The Markoff and Lagrange Spectra, Math. Surveys and Monographs 30 (Providence: AMS) 1989. | MR | Zbl
and ,[F] Trace classes and quadratic forms in the modular group, Can. J. Math., to appear. | MR | Zbl
,[H] Diophantine approximation on hyperbolic Riemann surfaces, Acta Math. 156 (1986) 33-82. | MR | Zbl
,[H2] Geometric Markoff theory and a theorem of Millington, in: A. Pollington and W. Moran (eds.) Number theory with an emphasis on the Markoff Spectrum (New York: Dekker) (1993) pp. 107-112. | MR | Zbl
,[H-S] Hurwitz constants and diophantine approximation on Hecke groups, JLMS (2) 34 (1986) 219-234. | MR | Zbl
and ,[L] Mostow rigidity and the Bishop-Steger dichotomy for surfaces of variable negative curvature, Duke Math. J. 68 (1992) 237-269. | MR | Zbl
,[R] A class of continued fractions associated with certain properly discontinuous groups, Duke Math. J. 21 (1954) 549-563. | MR | Zbl
,[S-S] Length spectra for Hecke triangle surfaces, Math. Z., to appear. | MR | Zbl
and ,[S] Low height Hecke triangle group geodesics, Cont. Math. 143 (1993) 545-560. | MR | Zbl
,[W] Diskrete deformation fuchsscher gruppen und ihrer automorphen formen, J. f.d.r.u.a. Math. 348 (1984) 203-220. | MR | Zbl
,