Crystal bases of Verma modules for quantum affine Lie algebras
Compositio Mathematica, Tome 92 (1994) no. 3, pp. 299-325.
@article{CM_1994__92_3_299_0,
     author = {Kang, Seok-Jin and Kashiwara, Masaki and Misra, Kailash C.},
     title = {Crystal bases of {Verma} modules for quantum affine {Lie} algebras},
     journal = {Compositio Mathematica},
     pages = {299--325},
     publisher = {Kluwer Academic Publishers},
     volume = {92},
     number = {3},
     year = {1994},
     mrnumber = {1286129},
     zbl = {0808.17007},
     language = {en},
     url = {http://www.numdam.org/item/CM_1994__92_3_299_0/}
}
TY  - JOUR
AU  - Kang, Seok-Jin
AU  - Kashiwara, Masaki
AU  - Misra, Kailash C.
TI  - Crystal bases of Verma modules for quantum affine Lie algebras
JO  - Compositio Mathematica
PY  - 1994
SP  - 299
EP  - 325
VL  - 92
IS  - 3
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1994__92_3_299_0/
LA  - en
ID  - CM_1994__92_3_299_0
ER  - 
%0 Journal Article
%A Kang, Seok-Jin
%A Kashiwara, Masaki
%A Misra, Kailash C.
%T Crystal bases of Verma modules for quantum affine Lie algebras
%J Compositio Mathematica
%D 1994
%P 299-325
%V 92
%N 3
%I Kluwer Academic Publishers
%U http://www.numdam.org/item/CM_1994__92_3_299_0/
%G en
%F CM_1994__92_3_299_0
Kang, Seok-Jin; Kashiwara, Masaki; Misra, Kailash C. Crystal bases of Verma modules for quantum affine Lie algebras. Compositio Mathematica, Tome 92 (1994) no. 3, pp. 299-325. http://www.numdam.org/item/CM_1994__92_3_299_0/

[D] Drinfeld, V.G.: Hopf algebra and the Yang-Baxter equation. Soviet Math. Dokl. 32 (1985) 254-258. | Zbl

[J] Jimbo, M.: A q-difference analogue of U(g) and the Yang-Baxter equation. Lett. Math. Phys. 10 (1985) 63-69. | MR | Zbl

[JMMO] Jimbo, M., Misra, K.C., Miwa, T. and Okado, M.: Combinatorics of representations of U q(šl(n)) at q = 0. Commun. Math. Phys. 136 (1991) 543-566. | MR | Zbl

[K1] Kashiwara, M.: Crystalizing the q-analogue of universal enveloping algebras. Commun. Math. Phys. 133 (1990) 249-260. | MR | Zbl

[K2] Kashiwara, M.: On crystal bases of the q-analogue of universal enveloping algebras. Duke Math. J. 63 (1991) 465-516. | MR | Zbl

[KKM] Kang, S.-J., Kashiwara, M. and Misra, K.C.: Crystal bases of Verma modules for quantum affine Lie algebras. RIMS preprint 887 (1992).

[KMN1] Kang, S.-J., Kashiwara, M., Misra, K.C., Miwa, T., Nakashima, T. and Nakayashiki, A.: Vertex models and crystals. C. R. Acad. Sci. Paris t.315, Série I (1992) 375-380. | MR | Zbl

[KMN2] Kang, S.-J., Kashiwara, M., Misra, K.C., Miwa, T., Nakashima, T. and Nakayashiki, A.: Affine crystals and vertex models. Int. J. Mod. Phys. A. Suppl. 1A (1992), 449-484. | MR | Zbl

[KMN3] Kang, S.-J., Kashiwara, M., Misra, K.C., Miwa, T., Nakashima, T. and Nakayashiki, A.: Perfect crystals of quantum affine Lie algebras. Duke Math. J. 68 (1992) 499-607. | MR | Zbl

[KM1] Kang, S.-J. and Misra, K.C.: Crystal bases and tensor product decomposition of Uq(G2)-modules. J. Algebras, to appear. | MR | Zbl

[KM2] Kang, S.-J. and Misra, K.C.: The quantum affine Lie algebra Uq(C(1)n) and crystal base. Manuscript in preparation.

[KN] Kashiwara, M. and Nakashima, T.: Crystal graphs for representations of the q-analogue of classical Lie algebras. RIMS preprint 767 (1991), J. Algebra, to appear. | MR | Zbl

[Li] Littelmann, P.: Crystal graphs and Young tableaux. Preprint (1991). | MR | Zbl

[Lu1] Lusztig, G.I.: Canonical bases arising from quantized enveloping algebra. J. Amer. Math. Soc. 3 (1990) 447-498. | MR | Zbl

[Lu2] Lusztig, G.I.: Canonical bases arising from quantized enveloping algebra II. Progr. Theor. Phys. Suppl. 102 (1990) 175-201. | MR | Zbl

[LG] Lusztig, G.I. and Grojnowski, I.: A comparison of bases of quantized enveloping algebras. Linear algebraic groups and their representations. Contemporary Mathematics 153 (1993) 11-19. | MR | Zbl

[MM] Misra, K.C. and Miwa, T.: Crystal base for the basic representation of Uq(šl(n)). Commun. Math. Phys. 134 (1990) 79-88. | MR | Zbl

[N] Nakashima, T.: Crystal base and a generalization of the Littlewood-Richardson rule for the classical Lie algebras. Commun. Math. Phys. 154 (1993) 215-243. | MR | Zbl