@article{CM_1994__90_1_99_0, author = {Van Neerven, J. M. A. M. and de Pagter, B.}, title = {The adjoint of a positive semigroup}, journal = {Compositio Mathematica}, pages = {99--118}, publisher = {Kluwer Academic Publishers}, volume = {90}, number = {1}, year = {1994}, mrnumber = {1266497}, zbl = {0812.47042}, language = {en}, url = {http://www.numdam.org/item/CM_1994__90_1_99_0/} }
Van Neerven, J. M. A. M.; de Pagter, B. The adjoint of a positive semigroup. Compositio Mathematica, Tome 90 (1994) no. 1, pp. 99-118. http://www.numdam.org/item/CM_1994__90_1_99_0/
[AB] Positive Operators, Pure and Applied Math. 119, Academic Press, 1985. | MR | Zbl
and ,[BB] Semigroups of Operators and Approximation, Springer-Verlag, New York (1967). | MR | Zbl
, and ,[C1] Perturbation theory for dual semigroups, Part I: The sun-reflexive case, Math. Ann. 277 (1987) 709-725; Part II: Time-dependent perturbations in the sun-reflexive case, Proc. Roy. Soc. Edinb. 109A (1988) 145-172; Part III: Nonlinear Lipschitz perturbations in the sun-reflexive case, In: G. Da Prato, M. Iannelli (eds.), Volterra Integro Differential Equations in Banach Spaces and Applications, Longman, (1989) 67-89; Part IV: The intertwining formula and the canonical pairing, In: Semigroup Theory and Applications, Lecture Notes in Pure and Applied Mathematics, Vol. 116, Marcel Dekker Inc., New York- Basel (1989); Part V: Variation of constants formulas, In: Semigroup Theory and Evolution Equations, Lecture Notes in Pure and Applied Mathematics, Vol. 135, Marcel Dekker Inc., New York -Basel (1991). | MR | Zbl
, , , and ,[GN] Order structure of the semigroup dual: a counterexample, Indag. Math. 92 (1989) 199-201. | MR | Zbl
and ,[GM] Essays in Commutative Harmonic Analysis, Springer-Verlag, New York, Heidelberg, Berlin (1979). | MR | Zbl
and ,[M] Banach Lattices, Springer-Verlag, Berlin, Heidelberg, New York (1991). | MR | Zbl
,[MG] Sur la continuité de la variation, C. R. Soc. Sci. de Varsovie, 21 (1928) 164-177. | JFM
,[Na] R. Nagel (ed.), One-parameter Semigroups of Positive Operators, Springer Lect. Notes in Math. 1184 (1986). | MR | Zbl
[Ne] The Adjoint of a Semigroup of Linear Operators, Lect. Notes in Math. 1529, Springer-Verlag, Berlin, Heidelberg, New York (1992). | MR | Zbl
,[NP] Certain semigroups on Banach function spaces and their adjoints, In: Semigroup Theory and Evolution Equations. Lecture Notes in Pure and Applied Mathematics, Vol. 135, Marcel Dekker Inc., New York- Basel (1991). | MR | Zbl
and ,[Pa1] A characterization of sun-reflexivity, Math. Ann. 283 (1989) 511-518. | MR | Zbl
,[Pa2] A Wiener-Young-type theorem for dual semigroups, Appl. Math. 27 (1992) 101-109. | MR | Zbl
,[Ph] The adjoint semi-group, Pac. J. Math. 5 (1955) 269-283. | MR | Zbl
,[P1] Eine Kennzeichnung der totalstetigen Funktionen, J. f. Reine u. Angew. Math. 60 (1929) 26-32. | JFM
,[S] Banach Lattices and Positive Operators, Springer Verlag, Berlin, Heidelberg, New York (1974). | MR | Zbl
,[WY] The total variation of g(x + h) - g(x), Trans. Am. Math. Soc. 35 (1933) 327-340. | JFM | MR | Zbl
and ,[Z] Riesz Spaces II, North Holland, Amsterdam (1983). | MR | Zbl
,