The adjoint of a positive semigroup
Compositio Mathematica, Tome 90 (1994) no. 1, pp. 99-118.
@article{CM_1994__90_1_99_0,
     author = {Van Neerven, J. M. A. M. and de Pagter, B.},
     title = {The adjoint of a positive semigroup},
     journal = {Compositio Mathematica},
     pages = {99--118},
     publisher = {Kluwer Academic Publishers},
     volume = {90},
     number = {1},
     year = {1994},
     mrnumber = {1266497},
     zbl = {0812.47042},
     language = {en},
     url = {http://www.numdam.org/item/CM_1994__90_1_99_0/}
}
TY  - JOUR
AU  - Van Neerven, J. M. A. M.
AU  - de Pagter, B.
TI  - The adjoint of a positive semigroup
JO  - Compositio Mathematica
PY  - 1994
SP  - 99
EP  - 118
VL  - 90
IS  - 1
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1994__90_1_99_0/
LA  - en
ID  - CM_1994__90_1_99_0
ER  - 
%0 Journal Article
%A Van Neerven, J. M. A. M.
%A de Pagter, B.
%T The adjoint of a positive semigroup
%J Compositio Mathematica
%D 1994
%P 99-118
%V 90
%N 1
%I Kluwer Academic Publishers
%U http://www.numdam.org/item/CM_1994__90_1_99_0/
%G en
%F CM_1994__90_1_99_0
Van Neerven, J. M. A. M.; de Pagter, B. The adjoint of a positive semigroup. Compositio Mathematica, Tome 90 (1994) no. 1, pp. 99-118. http://www.numdam.org/item/CM_1994__90_1_99_0/

[AB] C.D. Aliprantis and O. Burkinshaw, Positive Operators, Pure and Applied Math. 119, Academic Press, 1985. | MR | Zbl

[BB] P.L. Butzer, and H. Berens, Semigroups of Operators and Approximation, Springer-Verlag, New York (1967). | MR | Zbl

[C1] Ph. Clément, O. Diekmann, M. Gyllenberg, H.J.A.M. Heijmans and H.R. Thieme, Perturbation theory for dual semigroups, Part I: The sun-reflexive case, Math. Ann. 277 (1987) 709-725; Part II: Time-dependent perturbations in the sun-reflexive case, Proc. Roy. Soc. Edinb. 109A (1988) 145-172; Part III: Nonlinear Lipschitz perturbations in the sun-reflexive case, In: G. Da Prato, M. Iannelli (eds.), Volterra Integro Differential Equations in Banach Spaces and Applications, Longman, (1989) 67-89; Part IV: The intertwining formula and the canonical pairing, In: Semigroup Theory and Applications, Lecture Notes in Pure and Applied Mathematics, Vol. 116, Marcel Dekker Inc., New York- Basel (1989); Part V: Variation of constants formulas, In: Semigroup Theory and Evolution Equations, Lecture Notes in Pure and Applied Mathematics, Vol. 135, Marcel Dekker Inc., New York -Basel (1991). | MR | Zbl

[GN] A. Grabosch and R. Nagel, Order structure of the semigroup dual: a counterexample, Indag. Math. 92 (1989) 199-201. | MR | Zbl

[GM] C.C. Graham and O.C. Mcgehee, Essays in Commutative Harmonic Analysis, Springer-Verlag, New York, Heidelberg, Berlin (1979). | MR | Zbl

[M] P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, Berlin, Heidelberg, New York (1991). | MR | Zbl

[MG] H. Milicer-Gruzewska, Sur la continuité de la variation, C. R. Soc. Sci. de Varsovie, 21 (1928) 164-177. | JFM

[Na] R. Nagel (ed.), One-parameter Semigroups of Positive Operators, Springer Lect. Notes in Math. 1184 (1986). | MR | Zbl

[Ne] J.M.A.M. Van Neerven, The Adjoint of a Semigroup of Linear Operators, Lect. Notes in Math. 1529, Springer-Verlag, Berlin, Heidelberg, New York (1992). | MR | Zbl

[NP] J.M.A.M. Van Neerven and B. De Pagter, Certain semigroups on Banach function spaces and their adjoints, In: Semigroup Theory and Evolution Equations. Lecture Notes in Pure and Applied Mathematics, Vol. 135, Marcel Dekker Inc., New York- Basel (1991). | MR | Zbl

[Pa1] B. De Pagter, A characterization of sun-reflexivity, Math. Ann. 283 (1989) 511-518. | MR | Zbl

[Pa2] B. De Pagter, A Wiener-Young-type theorem for dual semigroups, Appl. Math. 27 (1992) 101-109. | MR | Zbl

[Ph] R.S. Phillips, The adjoint semi-group, Pac. J. Math. 5 (1955) 269-283. | MR | Zbl

[P1] A. Plessner, Eine Kennzeichnung der totalstetigen Funktionen, J. f. Reine u. Angew. Math. 60 (1929) 26-32. | JFM

[S] H.H. Schaefer, Banach Lattices and Positive Operators, Springer Verlag, Berlin, Heidelberg, New York (1974). | MR | Zbl

[WY] N. Wiener and R.C. Young, The total variation of g(x + h) - g(x), Trans. Am. Math. Soc. 35 (1933) 327-340. | JFM | MR | Zbl

[Z] A.C. Zaanen, Riesz Spaces II, North Holland, Amsterdam (1983). | MR | Zbl