@article{CM_1994__90_1_37_0, author = {Abramovich, Dan}, title = {Subvarieties of semiabelian varieties}, journal = {Compositio Mathematica}, pages = {37--52}, publisher = {Kluwer Academic Publishers}, volume = {90}, number = {1}, year = {1994}, mrnumber = {1266493}, zbl = {0814.14041}, language = {en}, url = {http://www.numdam.org/item/CM_1994__90_1_37_0/} }
Abramovich, Dan. Subvarieties of semiabelian varieties. Compositio Mathematica, Tome 90 (1994) no. 1, pp. 37-52. http://www.numdam.org/item/CM_1994__90_1_37_0/
[1] Subvarieties of abelian varieties and of Jacobians of curves, P.H.D. Thesis, Harvard University, 1991.
,[2] Abelian varieties and curves in W d(C). Comp. Math. 78 (1991) 227-238. | Numdam | MR | Zbl
and ,[3] Toward a proof of the Mordell-lang conjecture in characteristic p. Duke I.M.R.N., 1992. | MR | Zbl
and ,[4] Points of finite order on an abelian variety. Math. of the U.S.S.R. Izvestya, vol. 17, 1 (1981) 55-72. | Zbl
,[5] Maximal abelian varieties in Wrd(C) and a counterexample to a conjecture of Abramovich and Harris. Preprint, 1991.
and ,[6] Diophantine approximation on abelian varieties. Annals of Math., to appear 1991. | MR | Zbl
,[7] The general case of S. Lang's conjecture. Preprint, 1991.
,[8] Algebraic geometry and local differential geometry. Ann. Scient. Éc. Norm. Sup., Ser 4, 12 (1974) 355-432. | Numdam | MR | Zbl
and ,[9] S.G.A. III Vol. 2, Expose VIII: Groups Diagonalisables. Lecture Notes in Mathematics 152.
et al.,[10] Fondéments de la Géométrie Algébrique, Sec. Math. Paris, 1962. | MR | Zbl
,[11] Letter to S. Lang, 1990.
,[12] Bi-elliptic curves and symmetric products. A.M.S. Proceedings, to appear. | Zbl
and ,[13] Autour d'une conjecture de Serge Lang. Inven. Math. 94 (1988) 575-603. | MR | Zbl
,[14] On Bloch's conjecture. Inv. Math. 57 (1980) 97-100. | MR | Zbl
,[15] Some theorems and conjectures in diophantine equations. Bul. Amer. Math. Soc. 66 (1960) 240-249. | MR | Zbl
,[16] Division points on curves. Annali di Mat. Pura ed Appl. LXX (1965) 229-234. | MR | Zbl
,[17] Higher dimensional diophantine problems. Bull. A.M.S. 80 (1974) 779-787. | MR | Zbl
,[18] Kodaira dimension of algebraic function fields. Am. J. Math. vol. 109, 4, p. 669-693. | MR | Zbl
,[19] An invariant approach to the theory of logarithmic Kodaira dimension of algebraic varieties. Bull. A.M.S. (N.S.)vol. 19, 1 (1988) 319-323. | MR | Zbl
[20] Classification of higher dimensional varieties. In: Algebraic Geometry, Bowdoin 1985, (ed.) S. Bloch, Procedings of Symposia in Pure Mathematics, vol. 46, part 1, p. 269-331. A.M.S., Providence R.I. 1987. | MR | Zbl
,[21] Weierstrass points in characteristic p. Inv. Math. 75 (1984) 359-376. | MR | Zbl
,[22] Lemma on logarithmic derivatives and holomorphic curves in algebraic varieties. Nagoya Math. J. 83 (1981) 213-233. | MR | Zbl
,[23] On holomorphic curves in algebraic varieties with ample irregularity. Invent. Math. 43 (1977) 83-89. | MR | Zbl
,[24] The structure of Gauss like maps. Comp. Math. 52(2) (1984) 171-177. | Numdam | MR | Zbl
,[25] Morphismes universels et variété d'Albanese; Exp. 11: Morhpisms Universels et différentielles de troisiéme espèce. Seminair C. Chevalley, 3e année: 1958/59. | Numdam | Zbl
, Exp. 10:[26] Curves of low genus in the symmetric square of a curve, unpublished (included in [12]).
,[27] Integral points on subvarieties of semiabelian varieties, preprint 1991.
,[28] On the conjectures of Mordell and Lang in positive characteristic. Inv. Math. 104 (1991) 643-646. | MR | Zbl
,[29] Classification of algebraic varieties I. Comp. Math. 27 (1973) 277-342. | Numdam | MR | Zbl
,