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Introduction

This paper is concerned with connections between the Iwahori-Hecke algebra
of a Coxeter group W and the combinatorial structure of Bruhat intervals. The
main result is that the Kazhdan-Lusztig polynomials and inverse Kazhdan-
Lusztig polynomials associated to a pair of elements of W can be defined using
a natural labelling (by the reflections T of W) of the edges of a graph associated
to the corresponding Bruhat interval. The definition involves certain orderings
of the edges of the graph, which can be regarded as describing a refinement in
this context of the combinatorial notion of shellability of the interval. In fact,
CL-shellability of Bruhat intervals has been proved by Bjôrner and Wachs
[3,4], and a byproduct of the results here is a proof of EL-shellability of Bruhat
intervals, which is a stronger result conjectured by Bjôrn er.
The construction of the Kazhdan-Lusztig polynomial Px,y here yields a

family of polynomials which "interpolate" between q-(l(y)-l(x))/2Px,y(q) and
q(l(y)-l(x))/2Px,y(q-1). These polynomials are parametrized by certain subsets of
T which we call initial sections of reflection orders; the polynomials corre-
sponding to the finite subsets are, up to some renormalization, precisely the
coefficients arising when one expresses products 7§Ci as linear combinations
of the basis elements T,, (where for v, we W, Tv and C’w respectively denote the
corresponding standard and Kazhdan-Lusztig basis elements of the Hecke
algebra). It is known that for finite Weyl groups and also for "universal"
Coxeter groups (see [5, 7]) that these coefficients are Laurent polynomials in
q 1/2 with non-negative integral coefficients. We conjecture that the polynomials
interpolating between q-(l(y)-l(x))/2Px,y(q) and q(l(y)-l(x))/2Px,y(q-1), (and also
similar polynomials defined here for the inverse Kazhdan-Lusztig polynomial
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Qx,y(q)) also have non-negative integral coefficients for arbitrary Coxeter
systems, extending the conjecture by Kazhdan and Lusztig on non-negativity
of the coefficients of Kazhdan-Lusztig polynomials. Non-negativity of Px,y and
Qx,y is known for crystallographic Coxeter groups (by interpreting them in
terms of intersection cohomology of Schubert varieties for associated Kac-
Moody groups) but non-negativity of the interpolating polynomials is not

known even in that case.

The interpolating polynomials defined here are closely analogous to certain
polynomials associated to shellings of face lattices of convex polytopes by
Richard Stanley (see [ 15, section 6] where the relevant polynomials are

denoted f(Pi, Ii, x)). Stanley’s polynomials are also conjectured to have non-
negative coefficients in general (this has been proved, in the special case of
rational convex polytopes, for a subset of these polynomials by interpreting
them in terms of intersection cohomology of associated toric varieties).

In subsequent papers, we will define Bruhat-like orders A on W paramet-
rized by initial sections A of the reflection orders of T, and extend tbe
definitions of Kazhdan-Lusztig polynomials and the corresponding interpolat-
ing polynomials to certain intervals in these orders. It will be shown that these
polynomials and Stanley’s polynomials may be given a common construction
involving labellings (by elements of a vector space) of the edges of the Hasse
diagram of the corresponding poset. We also begin an attempt to construct
quadratic algebras from these labelled posets, the representation theory of
which would provide a common explanation for many conjectural properties
of these families of polynomials, and which should be related to classical Lie
representation theory in the case of crystallographic Coxeter groups (especially
finite and affine Weyl groups).

In the case of face lattices, Stanley’s polynomials may be defined as sums
(with certain simple polynomial coefficients) of a special subset of these

polynomials which are analogous to Kazhdan-Lusztig polynomials. There is a
similar expression for interpolating polynomials for Kazhdan-Lusztig poly-
nomials as sums of Kazhdan-Lustig polynomials, but this is not suitable as a
definition since in this context the relevant coefficients are more complex (they
include the polynomials Rx,y of [11], for instance) and are not a priori
well-defined. To overcome this difficulty, we utilize a representation of the
Hecke algebra as an algebra of functions under a twisted convolution product.
We explain this representation first in the simplest case of a finite Coxeter

system ( W, S ). Let R=Z[q1/2, q-1/2] be the ring of Laurent polynomials in an
indeterminate q’12 over Z. Let a ~ a be the ring involution of (11t determined by
q1/2 ~ q-1/2. The set of functions W x W ---+ (11t becomes an (11t-algebra Ye under
the twisted convolution product
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for f, g: W x W ~ R and v, w E W. Moreover, the ring H has an involution f - f
defined by f(v, w) = f(v, wwo) where wo is the longest element of W.
One can show that the generic Hecke algebra e(W) of (W, S) over £P can be

embedded as a R-subalgebra of :te; for r~S, the standard generator 7§ of

Yf(W) corresponds to the function W x W ---+ f/l with (r, v) ~ q1/2 for all v~W,
(1, v)~q - 1 for v~W with rv  v in Bruhat order, and (w, v) H 0 for other

(w, v)~W  W. Moreover, f~f induces the Kazhdan-Lusztig involution

03A3w~WawTw~03A3w~WawT-1w-1 on 7,i(W). Let cw : W x W~R correspond to the
Kazhdan-Lusztig basis element C’w of H(W). For x  w, one has that

Cw(x, 1) = q-(l(w)-l(x))/2Px,w(q) and cw(x, wo) = q(l(w)-l(x))/2Px,w(q-1). The inter-
polating polynomials for Px,w are precisely the Laurent polynomials cw(x, v) for
varying v E W. For finite W, a reduced expression w. = r1···rn for the longest
element of W induces a total order ~ on T by the rule r1 ~ r 1 r2 r *%
... ri rn - 1 rnrn - 1 ···r1 (recall each element of T occurs precisely once in the
above listing). One can use these orderings of T and the above description of
the Kazhdan-Lusztig involution to give a characterization of the function cw
completely in terms of its values.
For infinite W, the absence of a longest element precludes the possibility of

such a simple description of cw, and the symmetry of the values of cw is lost (in
general, for instance, one cannot obtain q(l(w)-l(x))/2Px,w(q-1) as a value of c,,,).
One therefore considers instead the Hecke algebra H(W) as a subalgebra of
an algebra of functions W  A ~ R under essentially the same twisted convol-
ution product as before, where a/ is a certain subset of the power set of T

endowed with a left W action. Roughly, an element of A may be thought
of as the set of reflections in the positive roots (of the reflection representa-
tion of W) lying on one side of some (linear) hyperplane. The W action is

given by (w, A)~N(w) + wAw -1 where + denotes symmetric difference and
N(w) = {t~ T|l(tw)  l(w)}. The map w~N(w) identifies W (with left W action
by multiplication) with the elements of .si with finite cardinality, and comple-
mentation in T of elements of A corresponds to right multiplication by Wo in
finite Coxeter systems. The interpolating polynomials are then the values
assumed by the functions cw : W  A~R corresponding to the Kazhydan-
Lusztig basis elements C’w.
To characterize the cw for infinite Coxeter groups, and to describe EL-

shellings of Bruhat intervals, we use certain total orderings ~ of T with the
property that all their initial sections are elements of .si. For finite W, these
"reflection orders" are precisely the orders on T obtained from a reduced
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expression for the longest element as described above. To describe the orders
in general, recall that positive roots are naturally in bijection with T. The orders
on the positive roots which correspond to reflection orders on T may be

characterized as follows; the restriction of the order to the positive roots lying
on the plane spanned by any two positive roots is one of the two possible
orders in which a ray from the origin, undergoing a full rotation in the plane
beginning at a negative root, would sweep through the positive roots on that
plane. It is most convenient for our purposes to define reflection orders by an
algebraic condition equivalent to this, and to define as the set of all initial
sections of all reflection orders on T.

The arrangement of this paper is as follows. Section 1 provides a framework
for our later constructions by describing a procedure which associates a family
of Laurent polynomials to certain directed graphs with edges labelled by
elements of a totally ordered set. Section 2 is concerned with the definition and
properties of reflection orders and the set ç/ of their initial sections; these facts
will be used extensively in future papers. Section (3.1)-(3.3) describes in detail
the representation of the Hecke algebra as an algebra of functions under
twisted convolution product, leading to the interpolating polynomials for the
Kazhdan-Lusztig polynomials. In (3.4), this result is applied to give a natural
characterization of the polynomial Rx,y (x, y~W) [11] as a generating function
for a set of paths in the corresponding Bruhat interval. Sections (3.4)-(3.7)
describe the dual construction to that in (3.4)-(3.7), giving interpolating
polynomials for the Qx,y. Sections (3.8)-(3.9) list some conjectures generalizing
those of [7], [8, 7.16] and describe some evidence for them. Finally, in Section
4, we apply (3.4) to show that reflection orders give rise to EL-shellings of
Bruhat intervals.

A number of results in this paper appear in [8], notably the definition and
basic properties of reflection orders, and the result (3.4) (which was proved
there by a different argument that does not depend on the Hecke algebra).

1. Some constructions in incidence algebras

(1.1) Let R=Z[u, u-1] be the ring of Laurent polynomials in an indetermi-
nate u, and let a~a and a~â(a~R) denote the two ring involutions of f1lt

determined by û = u -1 and û = - u respectively. Set Y = u - u -1 and note
that a = â = - a. Let R+ = {03A3cnun~R| all cn  01.

Fix a locally finite poset (X, ); thus, X is a set,  is a partial order on X
and each interval [x,z] = {y~X|xyz}(x, z~X) is a finite set. Let
-0Y = MR(X) denote the incidence algebra of X over f1lt. Recall that the set

underlying -0Y is the set of functions f : X x X ~ R such that f(x, y) = 0 unless
x x y, and that for f, g~M
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Define ring involutions f - f and f - / of M by the formulae f (x, y) = f(x, y),
(x, Y) = f(x, y)(f~M, x, y~X).

Let r denote any element of aV satisfying conditions (i), (ii) below:

(i) r(x, x) = 1 (x~X)
(ü) r-1 =r.

For example, take r = a - la where a E M satisfies a(x, x) = 1 (x E X). Elements
r satisfying (i), (ii) arise naturally in [11], [16] and [6].

(1.2) PROPOSITION. Let r~M satisfy (i), (ii) above.

(i) There exists a unique p E M satisfying (a)-(c) below:
(a) p(x, x) = 1 (x ~M)
(b) p(x, y)~u-1Z[u-1] (x, y~X, x~y)
(c) p = r p

(ii) There exists a unique q E M satisfying (a)’-(c)’ below:
(a)’ q(x, x) = 1 (x ~M)
(b)’ q(x, y)~u-1Z[u-1] (x, yeX; x =1 y)
(c)’ q = qr

(iii) If r = r (i.e. r(x, y)~Z[03B1] for all x, y~X) then p-1 = q.
Proof The proof of (i) is by an argument in [14] which we briefly recall. Fix

x  y (x, y ~ X). Suppose p(z, y) is defined for all z with x  z  y and satisfies

Let f3(x, y) = 03A3z~(x,y] r(x, z)p(z, y). One must show that there exists a unique
element p(x, y) E u-1Z[u-1] satisfying p(x, y) - p(x, y) = 03B2(x, y). This will be the

case provided 03B2(x, y) = - 03B2(x, y).
But
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A similar argument proves (ii).

(1.4) We now describe a simple construction which produces pairs of mutually
inverse elements in A; in many natural situations these elements satisfy (i), (ii)
of (1.1).

Fix any subset E of {(x, y)~X x X 1 x  y}; regard E as the edge set of a
directed graph Q = (X, E). For n E N, let Cn denote the set of paths of length n
in Q; that is,

and define rl e W by

(1.5) PROPOSITION. For any subset 1 of C2, ri 1 = rJ where J = C2 B1.
Proof. It is sufficient to show that if x  z then

The left-hand side is equal to
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But for n &#x3E; 0 and 03C4~Cn(x, z), either D(1) = 0 or D(03C4) = {j - 1,j} for some
j(1  j  n); in either case,

03A3 03B1k-n-k03B1=0.
keD(t)

(1.6) A special instance of the construction in (1.4) arises when the edges of E
are labelled by elements of a totally ordered set, and I is the set of paths of
length 2 with decreasing label. For our applications, we need to examine this
situation more closely.
For x~X, let Ex = {(y, z) c- E 1 y = x or z = x.1 Assume that ~ is a total

order on a set A and Â: E ~ A is a function which restricts to an injection
03BB|Ex:Ex~^ for each x~X. Let A’ be the set of all initial sections of A i.e.
A’ = {A ~ ^|a ~ b for all a~A, b~^BA}.

Suppose given a function h~:X~R such that for all x~X, there are only
finitely many y E X such that y  x and h0(y) =1 0. It is easily seen that there is
a unique function h: X x A’~R with the following properties:

(i) h(x, ~) = h0(x) (x E X)
(ii) h(x, A) = 0 unless there exists y  x with h(y, 0) =1 0.
(iii) for each x E X, there exists a finite subset A’ of A such that f(x, A) = f(x, B)

if A ~ ^’ = B ~ ^’(A, B~A)
(iv) if t~A and A = {t’~^|t’ ~ tl then

h(x, A ~ {t}) = 
h(x, A) + 03B1h(x’, A) if x’ E X, (x, x’)~E and 03BB(x, x’) = th(x, A) if no such x’~X exists.

The following fact is also easily verified:

(1.7) PROPOSITION. With notation as in (1.6), define 1 s; C2 by

1 = {(x, y, Z) E C2|03BB(x, Y) &#x3E; ),,(y, Z)I.
Then

(1.8) Suppose now that in (1.6), (1.7) A and are such that rI = rC2BI. It follows
from (1.2)(i) and (1.7) that for any yeX there is a unique function h: X x A’
~R satisfying conditions (iii), (iv) of (1.6) and the following conditions
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(1.9) The construction described in (1.6) may also be applied to the opposite
poset of X. Specifically, E’ = {(x, y)~X x X|(y, x)~E} is the edge set of a
directed graph, and E’ is naturally labelled by 03BB’:E’~^ where À’

(x, y) = 03BB(y, x)((x, y) E E’).
Suppose that h’: X x A~R is obtained by applying the construction in

(1.6) to the reverse poset of X, using E’ as edge set and Jw’ as edge-labelling, and
that h: X x d --+ g¡¡ is as in (1.6). Moreover, suppose that the following holds:

{x E X|h(x, A)h’(x, A) =1- 0 for some A E A}

is finite, Then it is easily checked that

Similarly, if 1 : X - Z is a function such that 1(x) - 1(y) is an odd integer for
all (x, y) E E, then

(1.10) We mention, without proof, the following facts.

(i) Let r~M satisfy r(x, x) = 1(x ~X), r(x, y) E 03B1Z[03B1] (x, y E X, x :0 y) and set
s = r -1. Define

where Rkp(x, y) is the coefficient of ap in (r - 1)k(X, y), and define Sj,p similarly
using s instead of r.
Then it may be shown that Rj,p = Sp-1-j,p(0j p - 1). These equations

are of interest when, for example,
(a) X is an Eulerian poset [16] and r(x, y) = 03B1l(x,y)(x  y) where 1(x, y)

denotes the length of the interval [x, y], or
(b) X is a Coxeter group with Bruhat order, and r = R as defined in (3.1).
(ii) Suppose that in (i), r = r j for some I ~ C,. Then it may be shown that
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2. Orderings of reflections of Coxeter groups

Let (W, S) be a Coxeter system and 1: W- Fl denote the corresponding length
function. Without loss of generality, assume that ( W, S) is realized geometrically
as a group of isometries of a real vector space V as in [10, 3], and adopt the
notation there. In particular, II denotes the set of simple roots, 03A6+ the set of
positive roots and for non-isotropic 03B1~V, ra : V ~ V denotes the reflection in a.

Let T = ~w~W wSw-1 be the set of reflections of (W, S) and regard the power
set 8P(T) as an abelian group under symmetric différence :

Define N:W~p(T) by N(w) = {t~ T|l(tw)  l(w)}; then N is the

unique function W~p(T) satisfying N(r)={r}(r~S) and N(xy) = N(x)
+ xN(y)x-1(x, y~ W).

Recall from [9] that if W’ is any reflection subgroup of W (i.e. W’

= W’ ~ T&#x3E;) then ~(W’) = {t~ T|N(t)~W’={t}} is a set of Coxeter gener-
ators for W’. A reflection subgroup W’ of W is said to be dihedral if

# (~(W’)) = 2.

(2.1) DEFINITION. A total order ~ on T is called a reflection order if for
any dihedral reflection subgroup W’ of W either r ~ rsr ~ srs ~ s or

s ~ srs ~ ··· ~ rsr ~ r where {r, sl = x(W’).
Here, for example, r ~ rsr ~ ··· ~ srs ~ s means that

(2.2) Before proving the existence of reflection orders, it is convenient to note
the following more geometric formulation of their definition.
Any total order :5 on T determines a total order ~’ on 03A6+ by the condition

03B1 ~’ 03B2 iff r03B1 ~ r p. The order ~ is a reflection order iff the order :5’ has the
following property: if tl, f3, 03B3~03A6+, 03B1~’03B3 and f3 = ca + dy where c  0, d  0
then oc
To see this, one checks first by direct calculation that the result holds if

Il = (a, 03B2} where
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The result for general (W,S) reduces to this case since

(i) If W’ is a dihedral reflection subgroup of (W, S) and ~(W’) = {r03B1, r03B2}
(a, fi E 03A6+) then (03B11 fi) c- -cos 03C0/n|n~ N, n  2}~(-~, -1] [9, (4.4)]

(ii) if a, 03B2, 03B3~03A6+(03B1 ~ y) then r03B1, r,, ry) is dihedral iff 03B2~ Ri + R03B3 (see [9],
(3.2)).

(2.3) PROPOSITION. Let I, J be disjoint subsets of S and let WI = I&#x3E;,
Uj = J&#x3E; be the corresponding parabolic subgroups of W. Then there is a

reflection order ~ on T such that

(i) t ~ t’ if t E WI n T and t’ E TB W,
(ii) t ~ t’ if t E TB Uj and t’ E Wj n T

Proof. Let U denote the affine hyperplane

of V spanned by n and define

Note that the map 03A8~03A6+ defined by 03B1~03B1/(03B1|03B1)1/2 is a bijection.
Let f : V - R denote an arbitrary R-linear map such that for 03B1~03A0,

Set Po = {v~ V|f(v) &#x3E; 01. Note that P = Po satisfies conditions (i)-(iii) below:
(i) 0~P (ii) if x, y E P then x + y E P (iii) if xE P and c~R, c &#x3E; 0 then cx E P.

Choose a maximal subset P ;2 Po of V satisfying (i)-(iii) above (if V is

finite-dimensional, this can be done by a simple direct argument). Define a total
order ~’ on 03A8 by setting a ~’03B2 iff 03B2 - a e P ~ {0} (03B1, 03B2 E 03A8). Note that if 03B1, 03B2,
03B3~03A8, 03B1 ~ y and 03B2 = ca + (1 - c)y where 0  c  1, then 03B1~’03B2~’03B3. Using
(2.2), one sees that the total order ~ on T defined by r03B1~r03B2 iff 03B1~’03B2(03B1, 03B2 E 03A8)
is a reflection order.

Now suppose 03B1, 03B2~03A8 and r03B1~WI but r03B2~WI. Then one may write
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03B1=03A303B3~03A0c03B303B3 where 03A303B3~03A0c03B3 = 1 and cy = 0 unless ry~I, and similarly,
fi = 03A303B3~03A0d03B303B3 where ¿YEII dy = 1 and dy =1- 0 for some y E 1-1 with r03B3~SBI. It

follows that f(03B1) = 0 and f(03B2) &#x3E; 0 whence 03B2 oc E P, - P, which gives r« ~ rp.
Similarly, t ~ t’ if t ~ TBWJ and t’ E WJ n T.

(2.4) REMARKS
(i) The reverse of a reflection order is a reflection order.

(ii) Let (W’, S’) be a reflection subsystem of (W, S) (i.e. W’ is a reflection

subgroup of W and S’ = x(W’)). The restriction of a reflection order on T
to an order on W’ n T is a reflection order on the reflections of (W’, S’)

(iii) If ~ is a reflection order, r E S, t E T and r ~ t then r ~ t’ for all t’ E T n

r, t&#x3E; (since r~~(r, t&#x3E;). In particular, r ~ t iff r ~ rtr.

(2.5) PROPOSITION. Let ~ be a reflection order on T, and r E S. Then the

partial order ~’ on T defined by

is a reflection order on T.
Proof. To show that :S’ is transitive, it will suffice to show that if t1, t2’ t3 E T

and tl ~’ t2, t2 ~’ t3 then tl ~’ t3. Note that r~ {t2, t3l so r ~’ t3. Hence we
may assume tl ~ r. Consider first the case t3 ~r. Then rt3r ~ r so

rt2r ~ rt3r ~ r (since t2 ~’ t3) and thus t2 ~ r. From t1 ~’ t2 it follows that
rtlr ~ rt2r. Hence rt1r ~ rt3r, proving tl ~’ t3 as required. Now suppose r ~ t2.
Since t2 ~’ t3, it follows that r ~ t3; hence tl ~ t2 ~ t3 which gives tl ~’ t3. The
remaining case is t2 ~ r ~ t3. Here, t1 ~’ t2 and rt2r ~ r so rtir ~ rt2r ~ r.
Therefore t1 ~ r ~ t3, proving t1 ~’ t3. The proof that :S’ is reflexive and

antisymmetric is similar (and simpler).
To show that ~’ is a reflection order, fix a dihedral reflection subgroup W’

of W and write ~(W’) = {t, t’l where t ~ t’. One must check that either

Consider the case t ~ r ~ t’. Then t ~ tt’t ~ ··· ~ t’tt’ ~ t’. Now x(r W’ r) =
{rtr, rt’r} (by [9, (3.2) (i)]) and rtr ~ r ~ rt’r, so rtr ~ rtt’tr ~ ··· ~ rt’tt’r ~ rt’r.
Note that if t1 ~ r ~ t2 then t1 ~’ t2. It follows that t ~’ tt’t ~’ ··· ~’ t’tt’
~’ t’. The remaining cases (t ~ t’ ~ r, r ~ t ~ t’, t = r, t’ = r) are treated

similarly.

(2.6) Since N(xy) = N(x) + xN(y)x -1 (x, y E W), there is a W action on the set
p(T) defined by w. A = N(w) + wAw-1 (w E W, A ~ T). Note that w. (A + T) =
(w·A) + T(w~W, A ~ T).
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Let A denote the set of all initial sections of reflection orders on T. Thus, if
A ~ T, then A ~A iff there is a reflection order ~ on T such that a ~ b for all
a E A and b~TBA.

(2.7) LEMMA. If A~A then A + T~A and w·A~A for all w~W.
Proof. Let A E A. Then A + T~A by (2.4)(i). To prove w· A E A(w E W) it is

sufficient to show that r·A~A(r~S). Suppose first that r~A; if A is an initial
section of the reflection order :5, it is easily checked that r·A is an initial
section of the reflection order :5’ defined in (2.5). On the other hand, if r E A
then rA = r·(A + T) + T~A by what has already been shown.

(2.8) COROLLARY. If A, B~A are initial sections of a reflection order ~,
y E W and N( y -1 ) n A = N(y-1) n B then there is a reflection order ~’ of which
y· A and y· B are both initial sections.

Proof. The proof of this easily reduces to the case y~S, when it is clear from
the proof of (2.7).

(2.9) LEMMA. Let A~A and t~TBA. Then t·A = A + {t} iff there exists a
reflection order ~ on T such that A = {t’ ~ Tlt’ ~ tl.

Proof. Suppose A~A and t·A = A + {t}. Let ~, ~’ be reflection orders of
which A, t·A are initial sections, and set B = TB(A + {t}). There is a unique
partial order ~" on T such that

(i) the restrictions of fl and ~" to partial orders on A coincide
(ii) the restrictions of ~’ and ~" to partial orders on B coincide

(iii) t’ ~" t" for all t’~A~{t}, t" E B ~{t}.

It is easily checked that ~" is a reflection order and A = {t’~ T|t’ ~ tl.
Conversely, suppose that ~ is a reflection order and A = {t’ ~ T 1 t’ ~ tl. To

show that t· A = A + {t}, it is sufficient to show that for any dihedral reflection
subgroup W’ of (W, S) with t~W’ we have (t·A)~W’ = (A + (t)) m W’ i.e.

[N(t) n W’] + t(A n W’)t-1 = (A n W’) + {t}. By (2.4)(i) and [9, (3.3)(ii)], this is
just the assertion of the lemma for the dihedral Coxeter system (W’, x(W’)).
Therefore it is sufficient to check the claim when (W, S) is dihedral, which is

easily done.

(2.10) REMARK. Suppose that ~, ~’ are reflection orders on T and that A
is an initial section of both ~ and set B = TBA. Then there is a unique
order ~" on T satisfying conditions (i), (ii) of the proof of (2.8) and such that
a ~" b for all a E A, b E B. It is easily checked that ~" is a reflection order.

In the remainder of this section, we give a number of additional facts
concerning reflection orders and their initial sections. These won’t be needed
in subsequent sections, but are of some independent interest.
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(2.11) LEMMA. Let r be a finite subset of 03A6+ and A = {r03B1|03B1~0393} ~ T. Then
the following are equivalent:

(i) A~A
(ii) A = N(w) for some w ~ W

(iii) there exists a non-zero linear function ~:V~R such that r =

03A6+~~-1((0, ~))

Proof. We prove that (i) ~ (ii) by induction on #(A). If #(A) = 0, (ii) holds.
Otherwise, let ~ be a reflection order of which A is an initial section and let t
denote the maximum element of A in the total order induced by ~. Then
A = {t’~T|t’~t}. By (2.9) and (2.7), AB{t} = t·A~A. By induction,
t· A = N(w) for some w E W, so A = t· N(w) = N(tw).
To prove (ii) ~ (iii), define 0: V ~ R by ~(03A303B1~03A0c03B103B1) = 03A303B1~03A0c03B1. Then

03A6+=~-1((0, ~))~03A6. If A = N(w)(w~W) then 0393=03A6+~w(-03A6+)=
[(-~ °w- 1)- 1(0, ~)] ~03A6+.
The implication (iii) ~ (i) does not depend on finiteness of r. Suppose

r = 03A6+ ~~-1((0, ~)). It is easily seen that there is a total order  on V

(compatible with the vector space operations) such that r = {03B1~03A6+|03B1  01.
As in the proof of (2.3),  gives rise to a reflection order of T, and
A = {r03B3|03B3~0393} is an initial section of this order.

(2.12) REMARK. Let F z 03A6+. Say that r is closed if the conditions a, f3 Er,
03B3~03A6+, 03B3=c03B1+d03B2 where c, d  0 imply that y E r.
Note that if {r03B1|03B1~0393} ~A then both 0393 and 03A6+B0393 are closed. The converse

is open.

(2.13) PROPOSITION. Let (W, S) be a finite Coxeter system with longest
element wo, and tl’ ..., tn(n = l(w0)) be the elements of T. Then the total order
~ on T such that tl ~ t2 ~ ··· ~ tn is a reflection order iff there is a reduced
expression wo = r1 ··· rn(ri~S) such that ti = ri... ri-1riri-... ri (i = 1,..., n).

Proof. Suppose tl ~ ··· ~ tn defines a reflection order. Using (2.11), define
vi~W(i=0,...,n) by {t1,...,ti}=N(vi). Write vi=vi-1 ri(ri~W; i=1,...,n).
Then N(vi) = N(vi -1 ) + vi - 1 N(ri)vi - i from which N(ri) v-1 tivi-1}. Hence
ri~S (i = 1, ... , n). We now have N(r1···ri) = {t1,...,ti} (i = 0,..., n) so

ti = rI... ri." rI. Also, l(rl ··· rn) = #{t1,..., tn} = n = l(wo) so r1 ···rn = wo.
The converse follows from (2.11) and the following fact, which is valid for

arbitrary Coxeter systems: if a total order ~ on T is such that all its initial
sections are elements of A, then - is a reflection order. The proof of this fact
easily reduces to the case when (W, S) is dihedral, and is left to the reader.

(2.14) PROPOSITION. Let ~ denote a fixed reflection order on T. Fix w ~ W
and write N(w) = {t1,..., tn} where t 1 ~ ··· ~ tn . Then for 1  i  n,
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Proof. The proof is by induction on l(w). The result holds if l(w) = 0. Suppose
l(w)  1 and choose r E S n N(w). Write r = tio(1  io x n). We show first that

#(t~N(rw)|r~t}=l(w)-io.

Let W’ be any maximal dihedral reflection subgroup of W with r E W’. Now
# (N(w) n W’) = # (N(rw) n W’) + 1 and either t fl r for all t E W’ n T or t ~ r
for all t~W’~T. Hence

Summing over all the distinct maximal dihedral reflection subgroups W’ with
r E W’, one finds

Now consider the case 1 x 1 x n, i ~ i0. Suppose first i  io. Then ti ~ r,
rti r ~ r. Let fl’ be the reflection order on T defined in (2.5).

Suppose firstly that r E N(tiw). The map t H rtr induces a bijection

The result now follows by applying the inductive hypothesis to

The case r e N(ti w) is similar; one notes that t - rtr induces a bijection

This proves the assertion of the proposition for i x io. The result for i  io
follows by applying the result for i x io to the reverse order of ~.

3. Reflection orders and the Hecke algebra

(3.1) As in (1.1), let à = Z[u, u-1] where u is an indeterminate. Hence forward,
we write q1/2 in place of u (thus, un = qn/2, n~Z) in accordance with standard
notation for the Hecke algebra.
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Recall that the generic Hecke algebra B(W) of (W, S) over f1lt is the unital
associative f1lt-algebra which has a free R-basis {w}w~W and multiplication
determined by

where a = q’ /2 _ q- 1/2 [11].
There is a ring involution h H li of -4 defined by ¿WEW aw Tw ~03A3w~W aw-1w-1

where a ~ -a(a E Bl) is as in (1.1). For w E W, define R(x, w) c- A by

Regard R as an element of the incidence algebra .A of W (1.1) where W is
equipped with Bruhat order; then one has R-1 = R. Let p~M be the element
determined by (1.2)(i) (with r = R). For fixed w E W, LXEW p(x, w)x C’ w where
Cw is the unique element of Tw + 03A3xwq-1/2Z[q-1/2]x such that Cw = Cw
[11, (l.lc)]. Note that R = pp-1.

(3.2) Let A be as defined as in (2.6). For A~A and y E W, we will sometimes
write yA for y· A. Let denote the set of functions f : W x d --+ 0,-f such that
{w~ W|f(w, A) ~ 0 for some A~A} is finite. Regard 1’ as an R-module in
the natural way.
Note that e’ becomes an associative R-algebra under the product defined

by

The identity element is (5: W  A~R where for (w, A) E W x A, ô(w, A) = 1
if w = 1 and 03B4(w, A) = 0 otherwise. There is an à-antilinear ring involu-
tion of H’ denoted as usual by h-h (h~H’), such that for h~H’,

h(w, A) = h(w, A + T).
Let Y( denote the set of those f E e’ such that (3.2.1), (3.2.2) below hold:

(3.2.1) For any w E W, there is a finite subset T’ of T such that if A, BE .91 are
initial sections of the reflection order ~ and A n T’ = B n T’ then

f(w, A) = f (w, B).

(3.2.2) If A~A, t~TBA and t - A = A + {t} then
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(3.3) PROPOSITION

(i) The set Yt defined above is a subalgebra of H’.
(ii) The map 03B8:H~H(W) defined by 03B8(f) = 03A3w~W f(w,~)w is an isomor-

phism of R-algebras.
(iii) If f E Yt then f~H and 03B8(f) = 03B8(f).

Proof. Let 0: H~ H(W) be the R-linear map f~03A3w~W f(w, 0)Tw. We first
show that 0 is injective. Let Q denote the Bruhat graph of (W, S) [10, (1.1)];
recall that Q is defined to be the directed graph with vertex set W and edge set
E = {(wt, w)|w~W, t~N(w-1)}. Define a function 03BB:E~T by À(x, y) =
x -1 y((x, y)eE). Applying the discussion of (1.6) (for a fixed reflection order ~
on T) and making use of (2.9), one sees that 0 is injective.
Next we show that the set of those f~H’ satisfying (3.2.1) is a sub-

algebra of H’. Suppose f, g~H’ satisfy (3.2.1) and fix WE W Let X =

{x~W|f(x, A) ~ 0 for some A~A} and Y = {x-1w|x~X}; note X, Y are
finite by definition of H’. For x e X (resp. y e Y) choose a finite subset Sx (resp.
S’y) of T such that f(x, A) = f(x, B) (resp. g( y, A) = g(y, B)) if A, B are initial
sections of a reflection order fl and A n Sx = B n Sx (resp. A n S’y = B n Sy).
Let T’ = ~y~Y(N(y-1)~S’y~y-1(~x~XSx)y). Suppose A, B are initial sections
of a reflection order fl with A n T’ = B n T’. By (2.8), for any y E Y there is a
reflection order of which yA and yB are both initial sections. Moreover, for
x E X and y~Y, f(x, yA) = f(x, yB) since yA n Sx = yB n Sx; also

g(y,A) = g(y,B)(y~Y). Hence

proving fg satisfies (3.2.1).
Now we show that the set of those f~H’ satisfying (3.2.2) is a subalgebra

of e’. Suppose f, g~H’ satisfy (3.2.2). Suppose A~A and t~TBA satisfy
tA = A + {t}. Note that yty-1(yA) = yA + {yty-1}(y~W). Let x, YEW If
yt &#x3E; y, it follows that yty-1~yA, that xyty-1 &#x3E; x iff xyt &#x3E; x y and that



107

On the other hand, if yt  y then yty -1 E yA, and xyty-l &#x3E; x iff x yt  xy.

For any x, y E W write

If w E W, we have

where

and
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Hence (fg)(w, tA) = (fg)(w, A) + al(w, wt)(fg)(wt, A) as required to complete the
proof of (i).

Define er E e (r E S) by

Then 8(er) = T and 8(erh) = 1;8(h) (h E H). This implies that 0 is bijective (since
e(W) is generated as an R-algebra by {}r~S); hence Yf is generated as an
R-algebra by and 0 is an R-algebra isomorphism, proving (ii). To prove
(iii), it is sufficient to note that è, E H and 8(er) = Tr 1 (r ~S).

(3.4) COROLLARY. Let ~ denote a fixed reflection order on T and for x,
w E W let R(x, w) be as defined in (3.1). Then

where for fixed n E N, the inner sum is taken over those (tl, ..., tn) E Tn such that
xxt1  xt1t2  ...  xt1 ... tn= w and tn ~tn-1 ~ ··· ~ t1.

Proof. Let Q, E and À be as in the proof of (3.3). As in (1.6), define I ~ C2 by

Recall the definition of rI~M from (1.3), and note that (3.4) simply asserts that
R = rI.

Fix w e W and let f = 03B8-1(C’w). Note that f(x, QS) = p(x, w) where p is as in
(3.1). Let A’ denote the set of initial sections of ~ and let h : X x A’~R

denote the restriction of the function f to X x A’. Then h satisfies (1.6)
(ii)-(iv), and h(x, A) = 0 unless x  w. It follows from (1.7) and (3.3) (iii) that

i.e. p(x, w) = 03A3y~W rI (x, y)p(y, w). Since x, w are arbitrary, p = rIp.
Hence R = pp-1 - rl as required.

(3.5) One may also apply the construction in (1.6) to the reverse Bruhat order
to obtain a certain module for J’f. The following sections sketch the details,
paralleling (3.1)-(3.3).

Let K(W) denote the set of possibly infinite formal R-linear combinations
03A3w~Waww(aw~R), regarded as an R-module in the natural way. It is easily
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checked that there is a left /(W)-module structure on K(W) such that

where

There is an k-antilinear map K(W) ~ K(W) defined by

we denote this map by k ~ k(k e K(W)). Then k H k is an involution (i.e. k = k,
k E X(W)) and hk = hk (h~H(W), k~K(W)); the last claim may be proved
using [11, (2.0.6)] but will be obvious after (3.7).

Let q be the element of the incidence algebra M defined by (1.2) (ii)
(with r = R) and define Dw = 03A3y~Wq(w, y)y (w E W); note there is some

conflict with the notation of [15]. Then Dw is the unique element of

w + 03A3y&#x3E;wq-1/2Z[q-1/2]y such that D’w = D’w.

(3.6) Let K’ denote the set of functions f:W A~R, regarded as an

R-module in the natural way. For h ~H’ and k e K’, one may define hk e K’

by

It is easy to check that this makes MT’ into a left H’-module. For k E ::fî’, define

k e Jf by k(w, A) = k(w, A + T). Then k = k(k E JT) and hk = hk(h E Je’, k e K’).
Let aT z Jf denote the set of those f E::fî’ which satisfy (3.2.1) above and

(3.6.1) below:

(3.6.1) If A~A, t~TBA and tA = A + {t} then

(3.7) PROPOSITION.

(i) Regard K’ as an H-module via the imbedding Yt 4 H’. Then K is an
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e-submodule of K’.

(ii) Let q: K ~ K(W) be the R-linear map defined by Yf(f) = 03A3w~W f(w, ~)w
(f c- Then il is an isomorphism of R-modules, and for h E e, f ~K one has
~(hf) = 8(h)Yf(f) where 8 is as in (3.3)
(iii) For f~K one has f~K and q(f) = ~(f)

Proof. As in the proof of (3.3), one may show that il is injective, that hf EX
if h E e and f E X and that ~(erf) = 03B8(er)~(f)(r E S, f e K). To prove (i) and (ii),
it is therefore sufficient to show that n is surjective. Suppose Lwew awtw E K(W).
For any reflection order ~, let A~ denote the set of initial sections of ~. Using
(1.6) one obtains a function f~: W x A~~R such that f, (w, ~) = aw, (3.2.1)
holds and (3.6.1) holds provided A~A~ and tA~A~; in fact, in (3.2.1) one may
take T’ = N(w-1). To complete the proof of surjectivity of il, one must show
that if ~’ is another reflection order on T with A~A~’ then f,(w, A) =
f~’(w, A). We prove this by induction on l(w).

Let ~" be the reflection order constructed in (2.10). Write

N(w-1)~(TBA) = {t1,...,tk} where t1 ~’ ··· ~’ tk (note t1 ~" ··· ~" tk) and
define

Note that f~’(w, T) = f~"(w, T) by (1.7) and (3.4). Making repeated use of
(3.2.2), one finds

(by induction)

Similarly, by using (3.2.2) to relate f~(w, A) and f~(w, 0), one has

Hence

completing the proof of (i) and (ii).
To prove (iii), one checks from the definition of Jf that f~K if f~K. Then

~(f) = îl(f) follows from (1.7) and (3.4).
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(3.8) For w~W, let c’w = 03B8-1(C’w)~H and d’w = ~-1(D’w)~K. We now state a
number of conjectures concerning the c’w and d’w.
For A~W, let 03A9(W,S)(A) be the full subgraph of the Bruhat graph Q(W,S) on

vertex set A [10]. Note that there is an obvious notion of isomorphism for
pairs consisting of a directed graph together with a subset of its vertices.

CONJECTURE 1. For v, w~W and A~A, the Laurent polynomial
c’w(v, A) (resp. d’v(w, A)) is completely determined by the isomorphism
type of the pair (03A9(W,S)([v, w]), {x~[v, w]|v-1x~A}) (resp. of (03A9(W,S)([v, w]),
{x~[v, w]|w-1x~A}).

CONJECTURE 2. For v, w~W and A~A we have (a)c’w(v, A)~R+ and
(b)d’v(w, A)~R+.

CONJECTURE 3. For v, w~W we have (a) c’vc’w~03A3x~WR+ c’x and (b) c’vd’w~
03A3x~WR+d’x. (One allows infinité sums in (b), though 1 know of no example in
which the sum is not finite).

Conjectures 3(a), (b) may also be formulated directly in H(W) as follows:

3(a)’C’xC’y~03A3x~WR+C’z(x,y~W) 3(b)’ C’xCy~03A3z~WR+Cz(x, yEW).

(3.9) We now describe some special cases in which these conjectures are known
to hold.

(i) For dihedral groups, Conjectures 1-3 may be checked by straightforward
computation.
. (ii) For finite Coxeter groups, Conjectures 3(a) and 3(b) are equivalent and
the four conjectures 2(a), 2(b) above and 2(a)’, 2(b)’ below are all equivalent:

(see [8] or [13]).
Now for finite Weyl groups, 3(a)’ is proved in [15] and 2(b)’ is implicit in

[5], so Conjectures 2 and 3 both hold for finite Weyl groups (see [13], [12]).
For W of type H3 and H4, one has Pv,w~R+ and Qv,w~R+ [1]; hence

conjecture 2 holds in case A = ~ and W is finite.
(iii) For crystallographic Coxeter systems, 3(a) is known [15] and conjecture

2 holds for A = 0 (i.e. Pv,w, Qv,w~R+) ([15], [6]); the latter implies that in this
case, the sums of the coefficients of cw(v, A) and dv(w, A) are nonnegative for
any A~A.

(iv) For "universal" Coxeter systems (i.e. free products of cyclic groups of
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order 2), 3(a) and 3(b) are known by [8] and 2(a) may be proved by adapting
the methods of [7]. Conjecture 2(b) for finite A is equivalent to 2(b)’ and is
proved in [8].

(v) In general Coxeter systems, Conjecture 1 is known for l(w) - 1(v) x 4.
Conjecture 2 holds for l(w) - l(v)  3. Moreover, if l(w) - 1(v) = 4, the coeffi-
cient of qn/2 in c’w(v, A) and d’(w, A) is non-negative unless perhaps n = 0 (in
particular, Pv,w~R+ and Qv,w~R+; these last facts are proved in [8]).

(vi) Suppose that x, y~[v, w] and x-1y~T imply II(x)-I(Y)1 = 1; this is

actually a condition on the isomorphism type of the poset [v, w] (see [10]).
Then c’w(v, A) and d’(w, A) reduce to polynomials defined in [16] and Conjec-
ture 1 holds trivially for [v, w].

(vii) For arbitrary (W, S), dl(w, A) = q-l(w)/2q#(A~N(w-1))(w~W, A~A); this
follows from (2.14).
One expects a similar result to (vii) for d’v(w, A) when Qi,,w = 1 and for

c’w(v, A) when Pv,w = 1.

(3.10) REMARK. Let Je, 1 denote the subset of H consisting those f~H such
that for w E W, t E T and A~A with wt &#x3E; w and tA = A + {t} one has

(i.e. the inequalities hold coefficient by coefficient). One may check that if f,
g~H1 then fg~H1 and f~H1. It is natural to ask whether c’w~H1(w~ W); 1
have proved an analogous property in the situation of [16] for Eulerian lattices
of rank 4 with "nice" shellings (see (4.8)).
An affirmative answer to the question here would imply that Px,w  Py,w if

y  x; 1 have checked Px,w  Py,w (y x x) for W of type A,, B4, D4 and H3.
To conclude this section, we mention an identity involving the coefficients of

the polynomials R(x, w). The proof, which uses (3.4) and (2.14), will be omitted.

(3.11) PROPOSITION. Write R(x, w) = ¿jEN Rj(x, w)aj (Rj(x, w) EN). Then
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4. EL-labellings of Bruhat intervals

Let (W, S ) be a Coxeter system; maintain the notation of section 2. For

I~K~R, let DKI ={w~W|I~N(w-1)~S~K} [2]. Note that if v~DKI
then N(v-1)~WI = WI~ T and N(v-1)~(SBK) = ~.

If u, w~DKI and u  w, define [u, w]KI = {z~DKI|u  z  w}. It is known

that if u, w~DKI (u  w) then all maximal chains u = uo  u1  ···  up = w in

[u, w]KI have the same length p = l(w) - l(u) [4, 5.1 and 3,5].
Let ~ denote a fixed reflection order on T with the following properties:

(i) t’ ~ t if t E T n WSBK and t’ E TBWSBK
(ii) t’ ~ t if t’~T~WI and t~TBWI.

(4.1) LEMMA. Let u, WE W with u  w and l(w) - l(u) = 2.

(i) There exist unique x, YE W such that uxw,uyw, u-1x~x-1w
and u-1y ~ y-1w. Moreover, y-1w ~ x-1w and u-1x ~ u-ly.

(ii) If u, w E DÎ and y is as in (i), then y~DKI.

Proof The reflection subgroup of W generated by {z-1v|z, V E Cu, w]} is

dihedral by [10, (3.1)J. Using (2.4)(ii), one sees that to prove (i) there is no loss
of generality in assuming that (W, S) is dihedral (cf. the proof of [10, (2.1)J). We
leave the verification that (i) holds if (W, S ) is dihedral to the reader.
Now suppose that u, w~DKI but y~DKI. Then either yr &#x3E; y for some r~I or

yr  y for some r~SBK. Suppose first that yr &#x3E; y(r~I). Since wr  w, it

followsthaty == wr, and w-1y=r~WI~T. But u-1y~y-1w so our assump-
tion (ii) on ~ implies u-1y~WI~ T. Hence w-1u~WI. But

and

which gives a contradiction since N(w-1u) ~WI ~ 0. Hence yr  y for all r~I.

Similarly, yr &#x3E; y for all r~SBK, so y~DKI.
Note that the proof of (ii) could be adapted to directly prove that [u, w]f

has the chain property for any u, w E DÎ with u  w.

(4.2) Let u, w e W with u E W and l(w) - l(u) = p. For any maximal chain
m = (uo, ... , up) (w = uo &#x3E; ··· &#x3E; up = u) in [u, w], define a p-tuple
03BB(m) = (ua 1u1, ..., u-1p-1up)~T p. Give P the lexicographie ordering induced by
the ordering ~ on T; thus, (03BB1,..., 03BBp)  (03BB’1,..., 03BB’p)(03BBi, 03BB’i e T) if for some

i(1  i  p), we have 03BB1 = 03BB’1,..., 03BBi- 1 = 03BB’i-1 and 03BBi ~ 03BB’i.
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(4.3) PROPOSITION. Suppose that u, w~DKI in (4.2). Then

(i) there exists a unique maximal chain mo in [u, w]KI such that

,1(ma) = (03BB1,..., 03BBp) satisfies 03BB1 ~ ··· ~ 03BBp
(ii) If m is any other maximal chain in [u, w]f then 03BB(m0)  03BB(m) in the

lexicographic order on TP.

Proof. Let m0 be the maximal chain in [u, w]f whose associated p-tuple
03BB(m0) = (03BB1,..., 03BBp) is lexicographically first amongst those p-tuples arising
from maximal chains of [u, w]KI. We show that ,11 ~ ··· ~ ,1p.

Write m0 = (uo, ... , up) where uo = w &#x3E; u1 &#x3E; ... &#x3E; up = u. Suppose that

03BBi &#x3E; 03BBi+1 for some i(1  i  p - 1). Then u-1i-1ui ~ u-1iui+1. The Bruhat inter-
val [ui-1, Ui+ 1] has 2 atoms, of which Ui is one; let u’i ~ ui be the other. By (4.1),
we have u’i~[u, w]KI and u-1i-1u’i~u-1i-1ui. It follows that m’0 =
(u0,..., ui-1, u’i, ui+1,..., up) is a maximal chain in [u, w]f with 03BB(m’0)  03BB(m0),
contrary to choice of m0. Hence 03BBi ~ ··· ~ 03BBp.
To complete the proof, it is sufficient to show that there is at most one

maximal chain m in [u, w] such that

satisfies

Now it is known (e.g. by [11], (2.0.b)-(2.0.e))J that Ru,w = ql/2(I(w)-I(u»R(u, w)
is a monic polynomial in q of degree l(w) - 1(u) = p. Hence R(u, w) is a monic
poynomial in 03B1= q-1/2 - q1/2 of degree p. By (3.4), there is exactly one
maximal chain m in [u, w] such that 03BB(m) = (03BB’1,..., 03BB’p) satisfies Â’ ~ ··· ~ J.) .

(4.4) In the terminology of [2], (4.3) asserts that the poset [u, w]Î is EL-

shellable. An argument similar to that above shows that if one equips TP with
the lexicographic ordering induced by the reverse of ~ on T, one obtains an
EL-labelling of the opposite poset of [u, w]f. It remains open whether the

generalized quotients WIV of [4] are EL-shellable.
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Notes added in proof

(i) 1 can now show that the coefficients of q in Qv,w and P V,w are non-negative
for general Coxeter systems. (ii) For a finite Weyl group, one can show all
c’w~H1 in (3.10) using results in the preprint "Shuffled Verma modules and
principal series modules over complex semisimple lie algebras" by R. Irving.


