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Introduction

Let C denote a smooth complete algebraic curve and L a line bundle on C. There
is a natural map, called the Wahl or Gaussian map,

which sends s A t to s dt - t ds. J. Wahl made the striking observation that if C is
embeddable in a K3 surface then (D, is not onto for L = Qé ([W], Thm. 5.9); this
raises the natural problem of studying the stratification of the moduli space of
curves Mg by the rank of the Wahl map 03A6(C) = 03A603A91C. Roughly speaking, our
main theorem says that the closure of the locus of curves of genus 10 which lie on
a K3 is equal to the locus where 03A6(C) fails to be surjective.

In order to state the theorem precisely and explain what is special about the
case of genus 10, we need to introduce some spaces. Let Fg be the moduli space
of K3 surfaces with a polarization of genus g, pjJg the union, over all S~Fg, of the
linear series |OS(1)|. Let f be the closure of the image of the natural rational
map 03BC:pg~Mg. As the dimension of pg is 19 + g and the dimension of Mg is
3g - 3, one might naively expect J.1 to be dominant for g  10 and finite onto its
image for g  11. These expectations hold for g  9 ([M], Thm. 6.1) and for odd
g  11 and even g  20 ([M-M], Thm. 1), but for 9 = 10, Mukai showed that y is
not dominant ([M], Thm. 0.7). This exceptional behavior is due to the fact that
the general K3 surface of genus 10 is a codimension 3 plane section of a certain
5-fold, so that when a curve lies on a general K3, it in fact lies on a 3-dimensional
family of them. One of our first tasks is to show that K is a divisor when g = 10.
Over the open subset Mo10 of eA10 of curves without automorphisms we have

the relative Wahl map; let 11/’° denote its degeneracy locus and 11/’ the closure of
11/’° in M10. It is a theorem of Ciliberto-Harris-Miranda [C-H-M] that W is a
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divisor (i.e. the Wahl map does not degenerate everywhere), and by Wahl’s
theorem K  1ÍÍ. Our result can then be stated as follows.

THEOREM. We have an equality of divisors

1ÍÍ = 4:ft.

Moreover, for the general curve C of genus 10 which can be embedded in a K 3
surface, the codimension of the image of the Wahl map 03A6(C) is 4.

It is worth remarking that a priori not every curve of genus 10 on a K3
appears in :ft: the variety Y consists of pairs (S, C) where OS(C) is indivisible in
Pic(S). But by Wahl’s theorem, every curve on a K3 has a degenerate Wahl map,
so by the theorem defines a point of K. It would be interesting to see explicitly a
family of curves polarizing K3s of genus 10 degenerating, for instance, to a plane
sextic (which polarizes a K3 of genus 2).
We also note that Voisin proved ([V] Prop. 3.3) that the corank ofO(C) is at

most 3 for a genus 10 curve satisfying certain hypothesis (3.1)(i), (ii) and (iii)
(loc. cit.). These hypotheses hold for a general curve, and (i) holds for a general
curve on a K3. It follows that either (ii) or (iii) fails for the general curve of genus
10 on a K3; as Voisin pointed out to us, a dimension counting argument
suggests that it is (iii) which fails generically.
To prove the theorem we first study the cohomology of a certain 5-fold X,

which is a homogeneous space for the exceptional Lie group G2, using a theorem
of Bott as in [M]. This allows us to show, in Section 2, that Y’ is a divisor and
that for every C which is a smooth codimension 4 plane section of X, the corank
of 03A6(C) is 4. This establishes the inequality of divisors W  4:ft. In Section 3, we
compute the classes of the divisors 11/ and X’ and find that 11/ is linearly
equivalent to 4K. The desired equality of divisors then follows.

1. The cohomology of the 5-fold X

One of the main tools in our analysis will be the cohomology groups of a certain
homogeneous variety X used by Mukai [M] to study the moduli space of K3
surfaces of genus 10. To recall the definition, let g be the complex semisimple Lie
algebra attached to the exceptional root system G2, let G be the corresponding
simply connected Lie group, and let p : G ~ Aut(g) be the adjoint representation.
If v E g is a lowest weight vector for p, then X = p(G)v is the orbit of v.

Equivalently, if P z G is the maximal parabolic subgroup of G associated to the
longer of the two roots in a system of simple roots for g, then X ~ G/P. The
homogeneous variety X has dimension 5 and is naturally embedded in P(g) as a
subvariety of degree 18; its canonical bundle is isomorphic to (D( - 3) ([M],
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p. 363). Mukai shows that the general K3 surface of genus 10 is a codimension 3
plane section of X and any abstract isomorphism between two such K3s is
realized by the action of G on the Grassmannian of codimension 3 planes in P(g)
([M], Thm. 0.2).

Recall that homogeneous vector bundles on X are in one to one corre-
spondence with finite dimensional linear representations of P. For example, if

(oei, 03B12} is a basis for the root system G2 with al the shorter root, so that P is the
subgroup corresponding to the subalgebra whose roots are all of the negative
roots together with ab then the tangent bundle to X = G/P corresponds to the
(reducible) representation of P with highest weight wi = 303B11 + 203B12. It has an

irreducible rank 4 subbundle corresponding to the representation of P with
highest weight a2 + 303B11 and the quotient is isomorphic to (9x(l), corresponding
to the irreducible representation of P with highest weight wl. Similarly Nx, the
normal bundle of X in P(g), has a composition series with quotients of rank 1, 3
and 4 corresponding to irreducible representations with highest weights 0,
403B11 + 2a2, and 6a1 + 3a2 respectively.
Now a theorem of Bott ([B]; see also [M], 1.6) asserts that when E is an

irreducible homogeneous vector bundle on a compact homogeneous variety
X = G/P, at most one of the cohomology groups Hi(X, E) is non-zero, and when
non-zero, the group is an irreducible G-module. Moreover, he gives a recipe for
calculating the index of the non-vanishing cohomology group. Application of
this result to the X considered above, which we leave as a pleasant exercise for
the reader (compare [M], Section 1), yields the following result.

(LEMMA 1.1

(1) We have h’(X, TX(-1)) = 0 and H’(X, TX) ~ g as a G-module. Moreover,
hi(X, Tx( - i)) = hi(X, Tx( - i -1)) = 0 for i = 1, 2, 3, 4.

(2) We have H0(X, NX(-1)) ~ g as a G-module and hi(X,Nx(-i-1))=0 for
i = 1,..., 4. Also, h’(X, NX(- i - 2) = 0 for i = 0,..., 4.

Now suppose that S is a smooth codimension 3 plane section of X and that C
is a smooth hyperplane section of S; then S is a K3 surface and C is a canonically
embedded curve of genus 10. Using Koszul resolutions of (D8 and (De as (9x-
modules, one easily checks the following assertions.

LEMMA 1.2

(1) ho(S, NS(-1)) = 14.
(2) ho(C, TX(-1)|C) = 0 and hO(C, TX|C) = 14.
(3) h°(C, Nc( - 2)) = 0 and h°(C, Nc( -1)) = 14.

(Here Nc and NS are the normal bundles to C and S in the projective spaces
they span in P(g); the last part also uses the standard isomorphism NX|C ~ Nc.)
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2. The corank of the Wahl map

We retain the notations of the introduction.

PROPOSITION 2.1. Suppose S is a general K3 surface of genus 10. Then

hl(S, Ts( -1)) = 3 and h2(S, Ts( -1)) = 1.
Proof. Consider the exact sequence

0 ~ TS(-1) ~ TP(-1)|S ~ NS(-1) ~ 0

where S ~ P = P10 is the given embedding. The long exact sequence of

cohomology yields

0 ~ H0(S, TP(-1)|S) ~ H0(S, NS(-1)) ~ H1(S, Ts(-1))

~ H1(S, Tp( -l)ls).

But the Euler sequence for TP|S implies that h’(Tp( - 1)1s) = 11 and

h’(Tp( - 1)|S) = 0. Indeed, we have

0 - H0(S, (9s)" - H’(S, TP(-1)|S) ~ H1(S, OS(-1))
~ H1(S, OS)11 ~ H1(S, TP(-1)|S) ~ H2(S, OS(-1)) ~ H2(S, CDS)11 i

with H1(S, CDs) = 0 (S is a K3) and H1(S, (9s( - 1)) = 0 ([K], Thm. 2.5);
moreover, the map H2(S, OS(-1)) ~ H2(S, OS)11 is injective by duality and the
projective normality of S ([Ma], Prop. 2). By Lemma 1.2, ho(S, Ns( - 1))
= 14, so h1(S, TS(-1)) = 3. As hO(S, TS(-1)) = 0, Riemann-Roch implies
h2(S, TS( -1)) = 1.

PROPOSITION 2.2. The locus K ~ 0 is a divisor.

Proof. First we need some deformation theory. Generally, given a smooth
complete curve C in a smooth complete surface S, we have the tangent sheaf Ts
of S, the tangent sheaf T, of C and the restriction TS|C = Ts O (9,. Extending the
latter two sheaves by 0 on S, we can define a coherent sheaf F on S as the fiber
product

The sheaf F is locally free of rank 2 and sits in exact sequences

and
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It is easy to check that the space of first order deformations of the pair C z S is
isomorphic to H1(S, F).

Returning to the case where S is a general K 3 of genus 10 and C is a smooth
plane section of C, the long exact cohomology sequence of (2.3) gives

and by Proposition 2.1, h2(S, TS(-C)) = 1. But H1(S, F) ~ H1(C, Tc) cannot be
surjective as the locus of curves on K3s has codimension at least one in A10’
Thus h2(S, F) = 0, h’(S, F) = 29 and the codimension of the image of

H1(S, F) ~ H1(C, Tc) is exactly 1. But this last map is the differential of the map y
of the Introduction, so the image of p actually fills out a divisor.

REMARK 2.5. Let M: éP - AIO be the rational moduli map as in the Introduc-
tion. If K is the closure of the image of y and N is the normal bundle of MT in

M10 then it follows from the long exact cohomology sequence of (2.4) and the
analysis above that the fiber at (C, S) c- Y (for C a curve in the K3 surface S) of the
bundle M*(N) is the one dimensional vector space H2(S, TS(- C)).

PROPOSITION 2.6. If C is a smooth codimension 4 plane section of X, then
Corank 03A6(C) = 4. For every C in -lï’, Corank 03A6(C)  4.

Proof. By [B-E-L] (2.11), Corank 03A6(C) = h0(C, NC(- 1)) - g where Nc is
the normal bundle to C in its canonical embedding. But by Lemma 1.2,
h°(C, NC(-1)) = 14 for a smooth codimension 4 plane section of X. The second
assertion follows by semi-continuity.

REMARKS 2.7. (a) If C is any smooth codimension 4 plane section of X then the
Clifford index of C is at least 3: if Cliff(C)  2, C is either hyperelliptic, trigonal,
or a degeneration of a smooth plane sextic and in all these cases, the corank of
03A6(C) is strictly greater than 4.

(b) It is possible to give (at least) two other proofs of the inequality Corank
03A6(C) 4: if C has Cliff(C)  3, it follows from results in [B-E-L] that

hO(N c( - 2)) = 0 where NC is the normal bundle to C in its canonical embedding.
On the other hand, a smooth codimension 4 plane section C of X is clearly 4-
extendable, so applying a theorem of Zak (described in [B-E-L]) and [B-E-L],
2.11, we find Corank 03A6(C)  4.

(c) For a third proof, let C be a smooth codimension 4 plane section of X and
consider the commutative diagram
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Here the horizontal maps are the Wahl maps for O(1) and the other maps are the
natural restrictions. Now b is clearly surjective, so the image of d = 03A6(C) is

contained in the image of f. We claim that f has corank 4: the exact sequence of
cohomology of 0 ~ Ntlx(2) -+ Qi(2)lc ~ 03A91C(2) ~ 0 gives

and the claim follows by observing that h1(Ntlx(2)) = h1(OC(-1)~4(2)) = 4 and
that H1(03A91X(2)|C) = H0(TX(-1)|C)* = 0 (Lemma 1.2).

COROLLARY 2.8. We have an inequality of divisors W  4K.
Proof. Let JIt = Mo10 denote the moduli space of smooth automorphism-free

genus 10 curves over the complex numbers, 03C0:C~M the universal curve,
w = 03A91l|M the sheaf of relative differentials and 2 = det(03C0*(03C9)) E Pic(M). We have
the relative Wahl map

which is a map of bundles of rank 45; let W denote its degeneracy locus. By [C-
H-M] the support of 11/" is a proper subvariety of uN and hence 11/" is a divisor.
By Proposition 2.6, the universal Wahl map 03A6 has corank at least 4 at each

point of K. It follows that det«D) vanishes to order at least 4 along K. Indeed,
take a small arc {Ct} crossing Jf transversally at a general point CoëJf and
apply the following observation: if {Mt} is a one parameter family of square
matrices then ordt=0 det(Mt)  dim ker(M 0); this is easily seen by diagonalizing
the matrix {Mt} over the discrete valuation ring of convergent power series in t.

3. The classes of 11/" and Jf

We continue to use the notations of the Introduction and Section 2. For divisors

D and E, linear equivalence will be denoted D - E. If L is a line bundle, we write
D - L to mean that the line bundles (9(D) and L are isomorphic. We will show
that W ~ 28À and that K ~ 7 A. The divisor W - 4K is then linearly equivalent
to zero and by Corollary 2.8 it is effective. But in the variety M = Mo10 the only
effective divisor D linearly equivalent to zero is D = 0: since uN has a projective
compactification with boundary of codimension 2, if D were not zero, there
would exist a complete curve T c uN not contained in D and intersecting D;
since D - 0 we have D. T = deg(O(D)|T) = 0, a contradiction. It follows that
W=4K.

PROPOSITION 3.1. W ~ 28/L

Proof. Since W is the divisor of zeros of the section det«D), W belongs to the
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class c1(03C0*(03C9~3))-c1(^2 03C0*(03C9)). From [Mu], 5.10, c1(03C0*(03C9~3)) ~ 3703BB. By the
splitting principle if E is a bundle of rank r then Cl(/B2 E) = (r-1)c1(E), so
cl(n2 03C0*(03C9)) ~ 903BB and the result follows.

Computing the class of -’e- will require some more preparation. We start with
some enumerative formulas. If f:X ~ B is a flat family of curves, where X and B
are smooth complete and dim(B) = 1, it follows from the Leray spectral sequence
that x(X, OX) = x(B, OB) - X(B, R1f*(9x). Applying Riemann-Roch and duality to
E = R1f*OX, we obtain x(E)=deg(E)+rk(E)x«(9B) and R1f*OX = (f*03C9X|B)* so

where we write 03BBX|B for det(f*03C9X|B) and where C is a general fiber of f.
For example, if C c S is a smooth curve on a smooth surface which moves in a

pencil, consider f : ~ P 1 where S is the blow-up of S at the base locus of the
pencil. Then deg(03BBf) = X(g, O)-1 + gc = X(S, Ws) - 1 + gc since x is a birational
invariant. In particular, if S is a K3 surface,

If C is a very ample smooth curve on a smooth complete surface S, let D c= Ici
denote the discriminant hypersurface, consisting of singular members of the
complete linear system |C|. If we consider a general (Lefschetz) pencil in ICI and
apply the Leray spectral sequence to the constant sheaf C this time, we may
count the number of singular fibers and obtain (see [G-H], pp. 508-510 for
details) deg(L) = 4(gc - 1) + C2 + ~top(S). In particular, if S is a K3 surface,

LEMMA 3.4. If S is a general K3 surface of genus 10, then

(a) only finitely many smooth curves C in the linear series l(9s(l)1 have

automorphisms.
(b) The linear series l(9s(l)1 contains at most a 2 dimensional family of curves

with a single node and with automorphisms.
(c) S carries a Lefschetz pencil consisting entirely of curves without auto-

morphisms.

Proof. (a) Consider a 19 dimensional family F of K3 surfaces of genus 10 in
P10 which dominates 57,0 (see, e.g., [M] for a construction) and let Y be the
canonical P10 bundle over 57 (whose fiber at S is |OS(1)|). Let k be the dimension,
for a general S in F, of the subset of |OS(1)| representing smooth curves with
nontrivial automorphisms. We want to show that k  0. By the definition of k
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there exists a subvariety aV ce * of dimension 19 + k consisting of smooth
curves with automorphisms, such that A dominates F. Let 03BC:A ~ -oYio be the
moduli map.
As S is general, its Picard group is isomorphic to Z, generated by (9s(C). It

then follows immediately from the main theorem of [G-L] that S contains no n-
gonal curves for n  5. But the largest component of curves with automorph-
isms in A10 which are not of this type has dimension 16 and consists of curves
with an involution such that the quotient has genus 3. Thus the fibers of J1 are at
least k + 3-dimensional.

On the other hand the dimension of the fibers of J1 is constant in a linear series
1(9s(I)j and generically this dimension is 3 (as follows from the proof of
Proposition 2.2). Thus k  0 as was to be shown.

(b) The argument in this case is similar, except that we work in Ao z A10, the
boundary component of A10 representing curves of arithmetic genus 10 with
one node. Here the locus of curves with non-trivial automorphisms has
dimension 17, consisting of hyperelliptic curves of (geometric) genus 9 with two
points conjugate under the involution identified. We find k  2. (Perhaps a more
refined analysis would improve this estimate.)

(c) This is an immediate consequence of (a) and (b).

PROPOSITION 3.5. W - 7/L

Proof. Fix a general S~F10, and let C c S be a smooth genus 10 curve.
Consider a general Lefschetz pencil l ~ |C|. By Lemma 3.4 03BC(l) c A, where A is
the moduli space of stable genus 10 curves without automorphisms. The Picard
group of the smooth variety A is freely generated by 03BB and the classes of the
divisors Ao, 02, A3, ~4, AI where for i &#x3E; 0, Ai consists of stable curves with a
node that separates the curve into components of genus i and 10-i, and Ao is
the divisor of stable curves with a singular irreducible component (as follows
from [A-C] Section 4 and [C] Section 1.3).
Denote W the closure of -Y’ in M. Then we have a relation

with a, bi~Z. Now we pull-back (3.6) to 1 in order to determine a. Since the

surface S is general, its Picard group is generated by the class of C and then there
are no reducible curves in |C|. This implies that LBi.l = 0 for i &#x3E; 0 (notice that
since is general its singular members have only nodes as singularities). From
(3.3), Do . l = 78 (notice that S, the blow-up of S along the base locus of the pencil
l, is smooth and hence 03BC(l) is transverse to ~0) and from (3.2) we obtain 03BB.l = 11.
To find K.l = deg 03BC*(NK|M)|l, we need to compute the degree of the line

bundle over l with fiber H2(S, 7§( - C)) for Ce l (Remark 2.5). More precisely,
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suppose 1 is spanned by Co = {s0 = 01 and CI = {s1 = 01 for s0, s ~H0(S,L)
(we write L = 6c,(C». We have a diagram

and  = {(x, t0, t1)|t0.s0(x)+t1.s1(x)=0} c S x Plis the zero set of a section of
f*OP1(1) Q g*L. Then

which equals (by base change and cohomology) deg H2(S, Ts 0 L*) Q
OP1(-1)=-1.
Combining thèse results we obtain the relation

The integral solutions to this equation area a = 7 + 78k, bo = 1 + 1 lk for k~Z.
We know (2.8) that W  4jf and (3.1) that W ~ 28/L Hence 0  a  7 and so
k = 0, a = 7, as desired.
As explained at the beginning of this section, the linear equivalence 4-"f’

together with the inequality W  4jf implies 11/’ = 4K; this completes the
proof of the main theorem.

REMARK 3.8. Note that our computation of the class of Jf in Pic(M) uses the
inequality a  7 (coming from Corollary 2.8 and Proposition 3.1) and the
equality 3.7, together with the fact that the coefficients a and ho in 3.7 are
integral. This integrality is why we work in the smooth variety Mo10. A more
traditional approach, which we were unable to carry out, would proceed by
writing down several pencils of genus 10 curves, computing their intersections
with 3i, À, and the Ai, and then solving the resulting system of linear equations
over Q.
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