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Introduction

In 1975 Hirzebruch and Zagier [HZ] computed the pairwise intersection
multiplicities for certain families of algebraic cycles IT,, : n e N} in the
Hilbert modular surfaces associated to Q(~p), for prime P - 1 (mod 4),
and showed that the generating functions

were elliptic modular forms of weight 2 and Nebentypus for 03930(p). Soon
thereafter Kudla [Kd 1 ] established by different methods the analogous result
for compact quotients of (products of) the complex 2-ball, and later Cogdell
[Cg 1 ] extended Kudla’s methods and results to the corresponding noncompact
quotients. In the meanwhile Zagier [Z2] had noticed that if certain weighting
factors were inserted into the formula for (Tcm· Tcn) then the new modified
Fourier series was again an elliptic modular form with the same level and
Nebentypus but now of higher weight, and he asked if these weighted inter-
section numbers might be obtainable as the ordinary geometric intersection
multiplicities of some algebraic cycles in some appropriate homology theory
for the Hilbert modular surfaces.

The purpose of this paper is to answer Zagier’s question for a quaternionic
modular surface S, the compact without-cusps analogue of a Hilbert modular
surface, using the approach of Kudla and Cogdell. To begin with we consider,
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for each k &#x3E; 0, a complex projective variety A(k) with the structure of
a family of 4k-dimensional abelian varieties parameterized by S, and we
construct a natural family of algebraic cycles {T(k)n : n E NI in A(k) with the
structure of a family of algebraic cycles over the Hirzebruch-Zagier cycles
in S. Then for the pairwise intersection multiplicities (T(k)m· T(k)n) we get
an expression which, though not closed, contains the very weighting factors
Zagier introduced. We also describe, for k &#x3E; 0, the harmonic differential
forms on A that are Poincare dual to the T(k)n. Finally recent results of Kudla
and Millson [Mi3] [KM6] together with a theorem of Eichler and Zagier [EZ]
allow us to deduce very quickly that the generating function

for the pairwise intersection multiplicities is an elliptic modular form of
weight 2k + 2 and Nebentypus on a suitable congruence subgroup of SL2(Z).

0.1. To describe our results and the contents of this paper more precisely, let
L be a lattice of rank 4 equipped with an indefinite anisotropic integer-valued
quadratic form q whose discriminant D is positive and nonsquare; thus, the
extension of q to L ~ R has signature (2,2). Then canonically associated to
(L, q) we have the following data: the level N and quadratic character e of
modulus N, as in [He]; the vector space V := L ~ Q with the symmetric
bilinear form defined by (u, v) := q(u + v) - q(u) - q(v) which is even
and integral on L ; the even Clifford algebra C+(V) of V, which is a totally
indefinite division quaternion algebra over the real quadratic field Q(~D);
the order 0 := C+(L) in C+(V) ; the spin group G := Spin(V), which
here consists of the norm 1 units of C+(V), and which comes equipped
with its vector representation 1j; : G ~ SO(V) of kernel {±1}; the spin
representation (u, W) of G, where W is the underlying vector space of
C+(V ) and 03C3 is left multiplication, which is irreducible over Q since C+(V)
is a simple algebra spanned by G; the lattice A C W underlying the order 0;
the arithmetic group r(L) := G fl 0, which preserves both L and 0; and the
hermitian symmetric domain ~ G(R)/K for a maximal compact K. We
also fix a torsion-free normal subgroup r of finite index in r(L) [Bo2]. Then
S := rBX, and as a C~-manifold

that A(k) can be given the structure of an algebraic family of (polarized)
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abelian varieties over s follows from the work of Kuga [Kg1] [Kg2] [Kg3] 
and Satake [Sal ] [Sa2] [Sa3] [Sa4], as described in section 2.

Next, for v e L with q(v) &#x3E; 0, let Lv := {u e L : (u, v) = 01, and let
qv be the restriction of q to Lv. Then all the same data associated to (L, q)
may be associated to (Lv, qv), defined in the same way: Vv, Gv, v, Wv, 039Bv,
etc. However, it should be noted that (in spite of the notation) (Lv, qv) and
therefore all the data associated to it depend only on the line Qv and not on
the choice of specific vector v E L n Qv. Thus, the purpose of section 1, in
addition to recalling various definitions, is to clarify the relationship between
the discriminant of Lv (resp. C+ (Vv), Ov) and that of L (resp. C+ (V), O).
The most interesting result is that ( ( v, v)D-1vD)1/2 =: nL(v) is the greatest
common divisor of {(u,v): u ~ L} (Proposition 1.1.3); this number shows
up later as a way of restoring dependence on the choice of specific vector v.

To construct the cycles T(k)n in section 2, we first construct some sub-
varieties of A(k) which are in some sense "too big" and then we trim
them down algebraically. The inclusion of L1) in L induces inclusions of
the objects associated to Lv into the corresponding objects associated to L,
so that if we let r v := Gv n r then we get a complex projective curve Sv,
an algebraic family of abelian varieties A(k)v whose dimension is half that
of A(k), and natural holomorphic (thus algebraic) immersions iv : Sv ~ S
and hv : Aik) ~ A(k) which are compatible with the fibrations, so that the
diagram (2.4.3) commutes. However, the hv(A(k)v) for q(v) = n are not the
components of the T(k)n (unless k = 0); in fact, when &#x3E; 0 the intersection

multiplicity of hv (A(k)v) with hu (A(k)u) is zero ! So next we observe, following
Kuga [Kg1] and [Go2], that there is an algebraic decomposition of the middle
cohomology H4k+2(A(k), Q) into subspaces isomorphic to Ha(0393,E), for
various Q-representations E of G. In particular, this means that there exists
an algebraic cycle P in the ring of correspondences on A(k) x A(k) which
induces a projection from H4k+2(A(k), Q) onto the subspace isomorphic to
H2(0393, E2k), where E2k is the irreducible constituent of highest weight in
1B 4kWk (see Lemma 2.3.5). This distinguished subspace of H4k+2(A(k), Q)
will be denoted by H4k+2(M, Q), where we use this notation because
H4k+2(M, Q) may be thought of as the Betti realization in degree 4k + 2 of
the "motive" M defined by the variety A and the projector P [Gr] [D3].
Now using the correspondence P, we get (for n &#x3E; 0)

where the sum is over representatives for the r-equivalence classes of
L(n) := {v E L : q(v) = n}. Thus T(k)n is an algebraic cycle on A(k)
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representing a class in H4k+2(M, Q).
Section 3 is devoted to computing the pairwise intersection multiplicities

of these algebraic cycles. For a pair of vectors u, v E L, let

up to a convenient renormalization, this is Zagier’s weighting factor, the
ultraspherical Gegenbauer polynomial associated to the representation E2k
above [VI], Ch. IX. Further let

denote the discriminant of the sublattice of L generated by u and v, and let

where x(.) is the Euler characteristic [Hi]. Note that since q is anisotropic,
D(u, v) = 0 if and only if Qu = Qv.

THEOREM 0.1.1. For m, n ~ 0,

where r acts diagonally on L(m) X L(n).

Our first proof of this theorem is geometric. The structure of the T(k)n is
such that when Íu(Su) and Ív(Sv) meet transversely (T(k)m· T(k)n) should be
a sum over the points of intersection of Íu(Su) with iv(Sv) of intersections
in the fibers of A(k) over those points counted with proper multiplicity, and
an application of Kudla’s methods [Kd1] confirms this, see Lemma 3.5. The
harder part of the proof is to show that the intersection multiplicity in a fiber
is Q2k (u, v), and for this a lemma of Millson (Lemma 3.8) plays a crucial
role. If, on the other hand, T(k)m and T(k)n have a component Y in common, we
suppose first that iu(Su) = iv(Sv) is nonsingular. Then we are able to show
that the top Chem class of the normal bundle of Y factors into the product of
the top Chern class of the normal bundle of iu(Su) times the top Chern class
of of the normal bundle of the fiber of Y. This allows us to write (Y . Y) in
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the form ~(Sv)Q2k(u, v), and then the extension to the case where Íu(Su)
may have singularities (normal crossings) is an adaptation of Kudla’s method
[Kd1], Proposition 5.2.

In section 4 we write down, for k &#x3E; 0, the harmonic differential forms w(k)n
on A(k) that are Poincare dual to the T(k)n, see Theorem 4.4, and give in (4.5)
an alternate proof for Theorem 0.1.1, for the case k &#x3E; 0, by integrating w(k)n
over T(k)m. It follows from [Kg1] and [MS] that the space of harmonic forms
on A(k) representing classes in H4k+2(M, C) is canonically isomorphic to
a space of cusp forms of weight 2k + 2 for r. Then our construction of a
suitable cusp form and the verification that it corresponds to the Poincare
dual of T(k)n are based on the constructions in [ZII [Z2] [Z3].

In the last section of the paper we give a quick proof that

THEOREM 0.1.2. Fk,m(03C4) is an elliptic modular form of weight 2k + 2,
level N and character 03B5; it is a cuspforni if k &#x3E; 0.

The key ingredient of the proof is that

is a Siegel modular form of genus 2, weight 2, level N and character e, as
follows from [KM4] [KM6] [Mi3]. Then it is proved in [EZ], Theorem 3.1,
that the Fourier-Jacobi coefficients ~(03C4, z) of 1) with respect to T’ have the
property that certain linear combinations of their Taylor coefficients with
respect to z --- which coincide with our Fk,m(03C4) -- are elliptic modular forms
of higher weight, as required.

0.2. As indicated earlier, this paper was motivated by a question of Zagier
[Z2] and the approach to intersection numbers as the Fourier coefficients of
modular forms of Kudla [Kd1]. In 1979 Tong [T 1 ] took a different approach
to Zagier’s question: In the cohomology of a Hilbert modular surface X
with coefficients in a vector bundle E he associated to a Hirzebruch-Zagier
cycle Tm on X a current coming from a section of the restriction of the
vector bundle to Tm, and then using the methods of [TT] he verified that
pairing two such currents yielded Zagier’s weighted intersection numbers.
Now it should be remarked that the cohomological home H4k+2(M, Q) for
our cycles is isomorphic to the cohomology of the surface with coefficients
in the sheaf of locally constant sections of the vector bundle E, and with this
identification, our cycles represent the same cohomology classes as Tong’s
currents, up to differences having to do with the cusps. The major differences
between Tong’s methods and ours are that: (i) our cycles are constructed
geometrically so as to be algebraic cycles in the cohomology of some variety
A(k) with constant coefficients; (ii) both of our computations of intersection
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multiplicities are different from Tong’s; and (iii) since we are not actually
working with the Hilbert modular surfaces that Zagier studied, we need a new
proof that the generating function for the intersection numbers is a modular
form.

Millson [Mi1] has also looked at special cycles of higher weight coming
from sub-torus bundles over totally geodesic cycles, of which hv(A(k)v C
A(k) (viewed as Reimannian manifolds) would be an example, and then used
these cycles to get nonvanishing theorems for the cohomology of arithmetic
subgroups r’ C 0(n, 1). In particular, there is the following analogy between
his work and ours: H4k+2(M, R) is also isomorphic to H2(r, H2k(V(R))),
the cohomology of 0393 with coefficients in harmonic polynomials of degree 2k.
Then the nonvanishing of the (first) cohomology of 0393’ with coefficients in
harmonic polynomials of some degree on its natural representation space,
[Mil ] Theorem 3.2, is the O(n, 1) analogue of the fact in this paper that
Tik) represents a nontrivial cohomology class. Lemma 3.8 below, which was
shown to us by Millson, allows us to go beyond nonvanishing to the actual
computation of intersection multiplicities.

In another direction, Oda [0] considered middle-dimensional cycles in
the locally symmetric varieties associated with SO(2, n - 2), and showed
(among other things) that the functions of the form

were cusp forms of weight (2k - n + 4)/2 and Nebentypus on a congruence
subgroup of SL2(Z), where p is a cusp form of weight k for SO(2, n - 2), and
l(x, v) is a (harmonic) polynomial weighting factor, and 03C9(x) is a suitable
differential. In the context of the present paper, ~ would correspond to a
differential form on a Kuga variety A which could be paired with a higher
weight cycle in the same variety, and Oda’s integral would be what remains
after integrating out the fiber variable; this may be compared with our second
computation of the intersection multiplicities, where we integrate the Poincale
dual form of one cycle over another (4.5). In addition, Oda’s work showed
that the Hirzebruch-Zagier map Tcm ~ f m ( T ), and Kudla’s and Cogdell’s
(and our) analogues thereof, could be viewed as geometric formulations of
the liftings of automorphic forms determined by a restriction of the Weil
representation [We] [LV] to a dual reductive pair [Ho], as in Shintani [Shn].

Since 1982 this last idea has motivated extensive investigation by Kudla
and Millson [KM1] [KM2] [KM3] [KM4] [KM5] [KM6] [Mi2] [Mi3], Tong
and Wang [TW1] [TW2] [TW3] [TW4] [TW5] [TW6] [TW7] [Wa] [T2],
and Cogdell [Cg2]. For example, the case k = 0 of our work (no fiber) fits
into the Kudla-Millson framework in the following way: Let G’ denote either
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SL2 or Sp4, and let ’ denote the corresponding symmetric space. Then there
is a canonically constructed theta series 03B8(x, x’), with x e X and x’ ~ X’,
which defines a closed differential form on S = 0393B and a modular form as
a function of x’. In case G’ = SL2, we have

and conversely, the harmonic Poincare dual of T(0)m can be obtained by
integrating 03B8(x, x’ ) against an elliptic modular cusp form. And we actually
use the case G’ = Sp4 in that o defined by (o.1.3) is given by

By comparison with this, our approach to the harmonic Poincare dual, Theo-
rem 4.2, and our proof that Fk,m is a modular form, Theorem 5.3, in the case
k &#x3E; 0 seem terribly ad hoc; yet it may be hoped that these results, especially
the appearance of [EZ], Theorem 3.1, in the proof of Theorem 5.3, may prove
to be suggestive examples when the results of Kudla and Millson and Tong
and Wang are extended to higher weight.

0.3. While the mathematical debt this paper owes to the work of Hirzebruch,
Zagier, Kudla, Millson and Cogdell may be clear, my personal debt of
gratitude to these authors is equally large: To Zagier for suggesting the
problem and much helpful encouragement; and to Hirzebruch and Zagier for
the opportunity to spend some time at the Max-Planck-Insitut fur Mathematik
in Bonn, where an important part of this work was done; and to Kudla,
Millson and Cogdell for several lengthy and very valuable conversations.
1 also benefitted from conversations with Cipra, Wang, Tong and Ozaydn,
and from the encouragement of K. Weih. And finally 1 would like to thank
the referee for some helpful suggestions, especially for the quick proof of
Corollary 3.3 in the form that it appears here.

The main results of this paper were announced in [Go1].

1. Algebraic preliminaries

This section may be skipped or quickly scanned on a first reading, and refered
to as needed. Here we détermine the relationship between the discriminants
of L and its sublattice Lv , we describe the even Clifford algebras of V and V,
and the relationships between them and between their orders generated by
L and Lv, and we recall some facts about the finite-dimensional class one
representations of the spin group of V.
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1.1. As indicated in the introduction, the basic data which governs this entire

paper is a lattice L of rank 4 equipped with an indefinite anisotropic integral-
valued quadratic form q whose discriminant is positive and nonsquare.
Letting V := L 0 Q, these assumptions on q and its discriminant imply
that signature(Vp,, q) = (2, 2). In addition, we equip V with the symmetric
bilinear form even and integral on L defined by

noting that with this definition ( v, V) = 2q(v).

let Lv : = Vv n L, and let qv denote the restriction of q to Lv and Vv. Although
we have indexed these objects by v, it may be helpful to note that Vv, Lv and
qv actually depend only on the line Qv.

In order to describe the relationship between the discriminants of L
and Lv, recall that the discriminant D : = D(L) of L is given by D (L) : =
det( (vi, vj)), where {v1, v2, v3, v4} is any Z-basis for L, and Dv := D(L,)
may be defined similarly. Let, for any v E L,

Then nL(mv) = mnL(v) for m E Z, so we see that nL(v)-2(v, v) depends
only on L and Q· v, the defining data of Lv, and not on v.

PROPOSITION 1.1.3. D(Lv) = nL(V)-2(v, v)D(L).

Proof. Let M := Z . v ~ Lv, and D(M) denote the discriminant of the
restriction of ( , ) to M. Then D(M) = [L : M]2 D(L) == (v, v)D(Lv), so
it suffices to prove that [L : M] = (v, v)nL(v)-1. Therefore we define

f:L~Z/(v, v)nL(v)-1Z by f(u) := (u, v)nL(v)-1 (mod (v,v)nL(v)-1).
Then m C ker f, for if u e M then u = av + bw with a, ab e Z and
w E Lv, whence f(u) E (v,v)nL(v)-1Z. Conversely, ker f C M, for if
f(u) = e(v,v)n£(v)-1 for some c e Z, then u - cv e Lv, so u e M.
Finally, f is surjective, for by the definition of nL(v) it follows that 1 is in
the ideal generated by { (u, v)nL(v)-1 : u ~ L } and f is Z-linear. D

REMARK. The same proof applies when Z is replaced by any commutative
principal ideal domain R, and L is a free R-module, and Lv = {v}~ n L for
some element v such that (v, v) ~ 0.

1.2. The even Clifford algebra C+(V) of V may be defined as the quotient
of the even part of the tensor algebra of V, that is the subalgebra generated



9

by products of an even number of elements of V, by the ideal generated by
the elements of the form v Q9 v - q( v) . 1 [Cas] Chapter 10, [Ch] Chapter II,
[E] section 4.5, [A] Chapter V. On C+(V) there is a canonical involution,
namely the antiautomorphism induced by v1 ~ ··· ~ V2r ~ v2, 0 ... 0 vi
in the tensor algebra, as well as a trace map e ~ c + c’ and a norm map
e ~ e. c’. In particular, for u, v E V,

uv + vu= (u, v) (1.2.1)

in C+(V). The even Clifford algebra C+(Vv) of Vv may be defined similarly,
and the inclusion of Vv in V induces an inclusion of C+(Vv) in C+(V) such
that the canonical involution, trace and norm of C+ (Vv) are the restrictions
of those of C+(V). Alternatively, C+ (V,) may be characterized as the sub-
algebra of C+ (V) fixed by the involution c ~ q( V )-lvev.

PROPOSITION 1.2.2.

(i) The even Clifford algebra C+(Vv) is an indefinite division quater-
nion algebra over Q whose canonical involution, trace and norm as
even Clifford algebra coincide with its canonical involution, reduced
trace and reduced norm as quaternion algebra. The reduced discrimi-
nant d(C+(Vv)) of C+(Vv) as quaternion algebra is the product of those
primes at which qv is anisotropic.

(ii) The center of C+(V) is spanned by 1 and an element 03B6 which is

determined up to homothety as the product of elements in a basis of V
and may be normalized so that 03B62 = D.

(iii) C+(V) = Q((). C+(Vv).
(iv) The even Clifford algebra C+(V) is a totally indefinite division quater-

nion algebra over the real quadratic field Q(03B6) whose canonical in-
volution, trace and norm as even Clifford algebra coincide with its

canonical involution, reduced trace and reduced norm as quaternion
algebra over Q(03B6). The reduced discriminant d(C+(V)) of C+(V) as
quaternion algebra over Q(03B6) is the product of those rational primes at
which q is anisotropic.

(v) The rational primes which divide d(C+(V)) split in Q( (), while the ra-
tional primes which divide d(C+(Vv))/d(C+(V)) are inert or ramified
in Q(03B6).

Proof. For (i) see [Cas], for (ii) see [Ch], and for (iii) see [A], (V.6), or
[Cas]. Since det q is not a rational square, C+(V) is a simple Q-algebra of
rank 8, whence by (iii) it is a totally indefinite quaternion algebra over Q( ()
with canonical involution, reduced trace and reduced norm as claimed. To

complete the proof of both (iv) and (v), let p be a rational prime and let p be
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a prime of Q(03B6) dividing p. Then

Now, if q is anisotropic at p, then so is q,, and C+(Vv) ~ Qp is a division
algebra. However, q is anisotropic at p if and only if p splits in Q(() and
the Hasse-Minkowski invariant of q at p is (-1)p [Cas] (4.2.6). In ths case,
Q(03B6)p ~ Qp and so C+(V) ~ Q(03B6)p is a division algebra. Conversely, if q is
isotropic at p, then either qv is also, in which case C+(Vv) is unramified at p
and C+(V) is unramified at p, or else [Q(()p : Qp] = 2, in which case Q(()p
splits C+(Vv) ~ Qp. D

It follows from this proposition that whenever Fo is a field containing Q
and an element w fl :f:( such that 03C92 = D, then

are orthogonal central idempotents in C+(V(F0)) ~ C+(V) ~Q Fo. But then

so that C+(Vv) embeds diagonally into C+(V) over Fo. Moreover, the
involution c H q(v)-’vev, of which C+(Vv) is the set of fixed points, maps
( to -(, thus interchanging el and £2. Now if F1 ~ Q is any splitting field
for C+(Vv), so that

and F is any field containing FoFl, then F is a splitting field for C+(V) over
Q. Over such a field F we have the commutative diagram

where the left-hand vertical arrow is the natural inclusion and the right-hand
vertical arrow is the diagonal map.

1.3. The lattice L C V determines the order O:= O(L) := C+(L) in
C+(V) generated over Z by products of an even number of elements
of L, andlikewiseLv C V" determines Ov = O(Lv) = C+(Lv) in C+(Vv).
From the definition of Lv as Vv~L we clearly have O(Lv) C C+(Vv) n O(L).

LEMMA 1.3.1.

(i) O(Lv) == C+(Vv)~ O(L).



11

(ii) The reduced discriminant of O(L) as an order in the simple Q-algebra
C+(V) is d(O(L)) = D(L)2.

(iii) The reduced discriminant of O( Lv) is

Proof. As a special case of [Cas] Theorem 7.3.1, for any Z-lattice M
and any ml, ... , ml e M, the following are equivalent: (a) there exist
mi+1, ..., mn such that {m1,..., mn} is a Z-basis for M; and (b) if

al ml +···+alml ~ M with al , ... , a, e Q, then ai e Z for 1 ~ i  1. Thus,
((b) implies (a)) a basis {v1, v2, v3} of Lv extends to a basis {v1, v2, v3, V41
of L. Therefore a basis f 1, ViVj : 1 ~ i ~ j ~ 3} of O( Lv) extends to a
basis f 1, vlv2v3v4, vivj : 1  i  j ~ 4} of O(L). Then ((a) implies(b))
yields (i).
Now fix a basis IV1, v2, v3, V41 of L and let

be the Z-basis of O(L) it generates. Then it is a straightforward, if lengthy,
computation, using (1.2.1) repeatedly, to verify that det(trC+(V)/Q(EiEj))1/2
= D( L)2, proving (ii), and (iii) is proved similarly. D

1.4. Recall that the spin group G := Spin(V) of V is the semisimple algebraic
group defined over Q by

where gug-1 makes sense as an element of the full Clifford algebra of V.
As dim V ~ 4 the second condition is redundant; however, it points out
that G comes equipped with its vector representation (03C8, V), defined by
1/;(g) . v : := gvg-1, which maps G into SO(V) with kemel {±1} [Cas] [Ch].
The spin representation (u, W ) of G is defined to be (equivalent to) the
left regular representation of G on any left ideal of C+(V); since C+(V)
is a simple Q-algebra, over Q the spin representation is just the left regular
representation of G on C+(V). The spin group Gv := Spin(Vv) of Vv with
its vector representation (03C8v, Vv) and its spin representation (03C3, Wv) may be
defined similarly. Moreover, as with the even Clifford algebras, the inclusion
of E in V induces an inclusion of Gv into G, so that Gv may also be realized
as C+(Vv) n G, or as the subgroup of G fixed by g H vgv-1, or as the
stabilizer via 1/; of V,.

In order to describe the irreducible finite-dimensional representations
of G and Gv , let Fo, Fi and F be as at the end of (1.2). Then over Fo
the spin representation decomposes into a sum of two inequivalent half-spin
representations,
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where (03C3(i), W(’» is given by left multiplication of G on C+(V(FO))ei’ as
in (1.2.3). Thus

Therefore, as in (1.2.5) we have a commutative diagram

In particular, over F the half-spin representation 7(i) projects G into the i’
factor of SL2 x SL2..
Now the rational finite-dimensional representations of G and Gv may be

described in terms of the more familiar theory for SL2: Let (k, Vk) denote the
symmetric tensor representation of SL2 of degree k and dimension k + 1, for
k ~ N. Then every absolutely irreducible finite-dimensional representation
of G, is equivalent over a splitting field to the composition (pk, Vk) of
Gv ~ SL2 with (03C1k, Vk) for some k. And every absolutely irreducible
finite-dimensional representation of G is equivalent over a splitting field
to (03C1(k1,k2), V(k1,k2)) for some (k1, k2) e N x N, where

and (03C1(i)k, V(i)k) is the composition of G ~ G(i) -i SL2 with (03C1k, Tlk ). More-
over, 03C1(k1,k2) (resp. pk) factors through 1/J (resp. 03C8v) if and only if k1 + k2
(resp. k) is even, as this is the condition under which 03C1(k1,k2)(-1) = 1

(resp. 03C1k(-1) = 1). We will be particularly interested in the representa-
tions of G which contain a Gv -invariant vector, the so-called "class one"
representations [VI]. Since [Sp]

these are exactly the 03C1(k1,k2) with k1 = k2.

1.4.6. To find the Q-simple representations of G and Gv we need only
determine the Galois orbits of the absolutely irreducible ones [Sa3]. Since
without loss of generality Fi may be taken to be quadratic over Q [Vi],
it follows that any Q-irreducible finite-dimensional representation of Gv is
equivalent over a splitting field to either pk or 203C1k for some k. For example,
the Q-irreducible spin representation w is equivalent over Fi to 2pi , while
1/;v ~F1 P2. Also without loss of generality we may let F0 = Q(~D), and
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take F = Fo fi to be biquadratic over Q. Then the nontrivial Galois automor-
phism of Fo interchanges the two half-spin representations, and it follows that
any Q-irreducible finite-dimensional representation of G is equivalent over a
splitting field to some p(k,k) or 03C1(k1,k2) ~ P(k2,k1) or 2(03C1(k1,k2) ~ 03C1(k2,k1)). For
example, r ~F 2(03C1(1,0) ~ 03C1(0,1)) and 03C8 ~F p(1,1).
1.4.7. We may also use the lattices L and Lv to define arithmetic subgroups
of G and Gv respectively. Let 0393(L) := 0 n G and 0393(Lv) := Ov ~ Gv.
Then 0393(L) is the group of norm 1 units of 0, implying in particular that it
preserves 0, and similarly for 0393(Lv). Of course r( L) also preserves L, as it
follows from the definitions that r(L) is normal in the subgroup of G which
maps L to itself; and again, a similar statement applies to I(L..).

2. Algebraic cycles of higher weight

Before constructing and describing the algebraic cycles which interest us, we
must first describe the algebraic variety and the subspace of its cohomology
in which they live. This variety, which has the structure of a family of po-
larized abelian varieties parameterized by an algebraic surface, is essentially
determined by L and q.

2.1. Let X denote the symmetric space associated to the real Lie group G(R).
Then  ~ G(R)IK, where K is a maximal compact subgroup of G(R),
but also X may be identified with the set of negative-definite 2-dimensional
subspaces ofV(R); in this realization the action of G on X factors through 1/;.
Moreover, these negative 2-planes may be given compatible orientations by
further identifying X with a fixed one of the two connected components of
its inverse image under the natural map from the Grassmannian of oriented
2-dimensional subspaces of V(R) to the Grassmannian of (unoriented)
2-dimensional subspaces of V(R). Once this is done, then X inherits a

complex struicture via the Borel embedding  ~ P(V(C)), defined by
mapping a negative 2-plane Tl- to the complex line 1 with the properties that
V- OR C = ~~~ and q(t) = 0 and (t, t)  0 and it A i is positive with
respect to the orientation of Tl- for all nonzero t e 1 [Sa4] (A.6.1).

Now let F denote a fixed torsion-free normal subgroup of finite index
in f(L) (1.4.6); such groups exist by [Bo2]. Then r acts freely and properly
discontinuously on X, and the quotient

S := r := rBJC
is a compact complex manifold [MT] [BHC] which can be embedded as a
smooth complex projective surface [K].

REMARK 2.1.1. We have chosen here to work with Sr, with r torsion-free,
normal and of finite index in 0393(L) as above, rather than the more canonical
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S0393(L) : = 0393(L)B, because the latter may have finite quotient singularities due
to noncentral torsion in r(L). However, since Sr(L) is a rational homology
manifold covered by the smooth Sr with finite covering group r(L)/r, all of
our results concerning the rational (co)homology of Sr could be reformulated
for Sr(L) by dividing by (r(L) : r) in the appropriate places.

2.2. To construct an algebraic family of abelian varieties parameterized
by S, let (03C3, W) be the spin representation of G obtained by identifying W
with C+(V) and a with multiplication on the left by G, and let A be the
lattice in W corresponding to O. Further, let j(x) e C+(V) be the ordered
product of the elements in any oriented orthonormal basis of x = V- e X;
note that this product is independent of the choice of oriented orthonormal
basis, and that j(x) E G(R) with j(x)2 = -1. Then following [Sa2], we may
define a nondegenerate skew-symmetric bilinear form on W(R), integer-
valued on A, by 03B2(c1, c2) := trC+(V(R))/R(bc1c2) for cl, c2 E W(R), where
0 ~ b E C+(V) is chosen such that trc+(v)/Q(bc) e Z for all c e 0 and
b = -b and bj(x) is positive with respect to the involution c ~ j(x)-1cj(x)
for all c E C+(V(R)) and x E X. Then 03C3(G(R)) C Sp(W(R),03B2), and
moreover, this inclusion induces a holomorphic map from X - G(IR)/ K
to the Siegel upper half-plane Sp(W(R),03B2)/K’, where K’ is any maximal
compact containing u(K). Therefore, from the theory developed in [Kgl], or
see [Sa2] [Sa4] [Mul], it follows that there exists a unique complex structure
on the Coo manifold

such that it becomes a smooth complex projective variety.
Now fix a nonnegative integer and let

(k factors) denote the k-fold fiber product. Then A, too, is a smooth complex
projective variety. As a Coo manifold

where (uk, Wk) denotes the k-fold direct sum of (u, W) with itself. For
the sake of completeness we will also allow k = 0, in which case we will
understand that A = S.

2.2.2. To describe the complex structure on A, let j(x) E C+(V) be
the ordered product of the elements in any oriented orthonormal basis of
x = V- e , as above. Then since j(x) E G(R) and j(x)2 = -1, it

follows that J(x) := ukoj(Z) determines a complex structure on Wk(IR).
Now glueing together the disjoint union of {(Wk(R), J(x)): x ~ } gives
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X x Wk (JR) a holomorphic structure as a vector bundle over X. In particular,
the natural map p : A ~ S is holomorphic, and thus algebraic.

Moreover, since J3 is Z-valuedon A and (W1,W2) I---t 03B2(w1, j(x)w2) is a
symmetric positive-definite bilinear form, Ak(x) = (Wk(IR)/ Ak, J(x), J3k)
is a polarized abelian variety for each E X (whose endomorphism ring ten-
sored with Q contains C+(V) [Sa2]), where J3k is the obvious extension of J3
to Wk. Moreover, for each -f e r the automorphism Uk( ï) of Wk(R) induces
an isomorphism from Ak(x) to Ak(03C8(03B3)x). Therefore we may identify the
fiber Ak(s): = cp-1(S), for s E S, with Ak (x) for any x E  which maps to s.

REMARK 2.2.3. A variant of the above construction would be to replace Wk
with W ~ W’, where W’ is a k-dimensional rational vector space on which
G acts trivially, and A by ̂  ~ A’, for some lattice A’ C W’. Then 0 could
be replaced by Q ~ J3’, where Q’ is a positive-definite bilinear form on W’,
integral on A’. The result would be a family A’ of abelian varieties

A’(x)=((W(R)~W(R)’)/(^~^’), j(x)~1,03B2~03B2’)
with A’( z) isogenous to A(x). In particular, A’ and A would have isomorphic
rational (co)homology.

REMARK 2.2.4. Similarly to the situation of (2.1.1), we could construct
the rational homology manifold A0393(L) ~ r(L)B(X x Wk(R)/^k) finitely
covered by Ar, and as before reformulate all our results for A0393(L).
REMARK 2.2.5. It should also be remarked that A is a family of Hodge type,
in the sense of [Mul] [Mu2], as well as a family of PEL-type, in the sense of
Shimura [Shm] (see also [Sa2] [Sa4]). It furthermore follows from Shimura’s
theory of canonical models [Shm] [Dl] [D2] that Sr and A are both defined
over some number field Fr.

2.3. Next we wish to identify a certain distinguished "algebraically defined"
subspace of the middle cohomology of A. Following [Kg3], for m E Z let
0m : A ~ .A be the endomorphism induced by (z, w) - (x, mw) for
(z, w) ~   Wk(R). Then the induced endomorphism 03B8*m acts as mb on the
E 2 a, bterm of the Leray spectral sequence for ~ : A - S and commutes with
the d2-differentials, from which one deduces that this sequence degenerates
at the Ez term ("Lieberman’s trick"). Thus

where for 0 ~ a ~ 4 and 0 ~ b ~ 8k
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Now we fix a base point zo e X with image so E S and identify 03C01(S, so)
with r by letting y e r correspond to the homotopy class of the image in S
of a path in X joining xo to 03B3x0. Similarly, Hl (,4’(xo), Z) ~ Ak and thus

where W is dual to W. Then with these identifications the monodromy action
Of7rl(S,SO) on Hb(Ak(zo),Q) becomes the A6 &#x26;k -action of r on ¡BbWk.
Thus we have

since both are isomorphic to Ha(s, Rbcp*Q). Thus each H~a,b~(A, Q) may be
further decomposed according as ^bk decomposes as a r- module. Note
that r is Zariski-dense in G [Bol], so that IBbWk decomposes identically
under the action of r or of G.

LEMMA 2.3.5. For each k &#x3E; 0 there is among all the absolutely irreducible
constituents of ̂ * (k, k) a unique one (7r2k, E2k) of maximal dimension.
Moreover, this representation occurs in ^* (k, k) with multiplicity one, it
is contained in 1B 4k( ük, k), it is equivalent to (P(2k,2k), V(2k,2k)), and it is
defined over Q.

Proof. After passing to a field F over which k NF 2k(p(l,o) E9 03C1(0,1)),
it follows from the Cauchy decomposition formula [L] (1.7.3) and the
Jacobi-Trudi formula [McD] (1.3.5) (or see [Kg1] (IV.2.2) or [KS]) that for
0 ~ b ~ 8k

where

with

understanding that (£) = 0 when m ~ N. Then it is simple to check that
the maximum of (ki + 1)(k2 + 1) four which m(k, b; kl, k2) ~ 0 occurs
when kl = k2 = 2k and b = 4k, in which case m(k, b ; kl, k2) = 1. Thus
(P(2k,2k), V(2k,2k») - ^4k(k, Wk) is the unique absolutely irreducible con-
stituent of maximal dimension and multiplicity one. Moreover, because it has
multiplicity one, it is fixed by Aut(F/Q), and is therefore defined over Q. 0
Now with (03C02k, E2k) as in the lemma, let H4k(03B52k(x), Q) denote the sub-



17

space of H4k(Ak(x), Q) isomorphic to E2k via (2.3.3), and let H4k+2(M, Q)
denote the subspace of H~2,4k~(A, Q) isomorphic to H2(r, E2k) via (2.3.4).
Then the following proposition is proved (in much greater generality) in [Go2].

PROPOSITION 2.3.6.

(i) For each x E X, there exists an algebraic cycle P(x) in the ring of
correspondences on Ak(x) x Ak(x) which induces a projection from
H4k(Ak(x), Q) to H4k( £2k( ae), Q). In particular, an algebraic class in
H4k(Ak(x), Q) projects to an algebraic class in H4k(03B52k(x), Q), and
an element of H4k(03B52k(x), Q) is algebraic if and only if it is so as an
element of H4k(Ak(x), Q).

(ii) There exists an algebraic cycle P in the ring of correspondences on
A x A which induces aprojection from H4k+2(A, Q) to H4k+2(M, Q).
In particular, an algebraic class in H’k+2(A, Q) projects to an al-
gebraic class in H4k+2(M, Q), and an element of H4k+2(M, Q) is
algebraic if and only if it is so as an element of H4k+2(A, Q). 0

Recall that the action of a correspondence C on the cohomology Hr (Z,Q)
of a projective variety Z is defined by lifting an element of Hr(z, Q) to
H2dimZ(Z X Z, Q) via the first projection from Z x Z to Z, then taking the
cup product with the class in H2 dim Z(Z x Z, Q) represented by C, and then
taking the image in HT (Z, Q) under the Gysin homomorphism associated to
the first projection from Z x Z to Z. Here, once one sees that a polynomial
in 0* induces a projection from H4k+2(A, Q) to H~2,4k~(A, Q), then (ii)
may be deduced from (i) by showing that when x represents a generic point
on S then P(x) may be extended to a correspondence on A which projects
H~2,4k~(A, Q) to H4k+2(M, Q). Furthermore, since we are working in the
middle cohomology of Ak(x) and A, we may arrange that the projections
induced by P(x) and P are orthogonal with respect to the cup product
pairings on these spaces.

REMARK 2.3.7. In the language of [Go2], the cohomology spaces

H4k(03B52k(x), Q) and H4k+2(M, Q) are said to be "algebraically defined,"
since there are algebraic correspondences which induce projections onto them.
Thus they may be thought of as the Betti realizations of Grothendieck motives
[Gr] [D3], although the technical distinction is that we have not produced
correspondences which induce projections from the full cohomology rings
H*(A, Q) and H*(Ak(x), Q). It may also be noted that Proposition 2.3.6 is
still true when (03C02k, E2k) is replaced by any other Q-rational sub-G-module
of ^*(k, Wk) (and the indices are changed accordingly), see [Go2].

2.4. As in section one, let v E L+ determine Vv = {v}~ and Lv = V" n L,
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with even Clifford algebra C+ ( Yv ) containing the order Ov = C+(Lv) and
spin group Gv. Further, let v denote the symmetric space associated with
the real Lie group Gv(R). Then as in (2.1), Xv may be identified with the
set of negative 2-planes in Vv(R), so that there is a natural embedding of v
into X, and moreover Xv may be given a complex structure which makes this
embedding holomorphic. Now let IB = 0393~ Gv and

Then Sv is a smooth complex projective curve which comes naturally
equipped with a morphism iv : Sv ~ S of degree one induced by the inclu-
sion of v in X. The image Cv : = 2v (Sv) may intersect itself transversely if
there are elements of r not in 0393v which identify points of v, but it will not
have any other singularities.

2.4.1. Now, as in (2.2), let (uv, Wv) be the spin representation of Gv obtained
by identifying Wv with C+(Vv) and letting Gv act from the left, and let
Av C Wv be the lattice corresponding to Ov. Then the restriction 03B2v of the
nondegenerate skew-symmetric bilinear forum /3 to the subspace Wv C W
is again a nondegenerate skew-symmetric bilinear form, for the conditions
in (2.2) on the nonzero b E C+(V) used to define,Q insure that (wl, w2) ~
/3( Wl, j (z )W2) is a symmetric positive-definite bilinear form for all wi, w2 E
Wv and all x E v. Hence av maps Gv into the symplectic group Sp(Wv,03B2v).
Thus, as before, there is a unique complex structure on

with which this quotient becomes a smooth complex projective variety. Then
with fixed as in (2.2.1), let

be the k-fold fiber product. The fibers of the natural map cpv : Av ~ S
are polarized abelian varieties Akv(x) := (Wkv(R)/^kv, Jv(x), 03B2kv), where
Jv(x) := 03C3kvoj(x) with j the same as in (2.2), and x e v, and /3v is the
obvious extension of 03B2v to W:. As a C~-manifold,

The natural inclusions Xv - X and Wv ~ W induce a degree one
morphism hv : A, ~ A which is compatible with the fiber structures in the
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sense that the following diagram commutes.

If k = 0 then we take Á = Sv and hv = iv .

DEFINITION 2.4.4. When k &#x3E; 0:

(i) For v E L+ and z E Xv, let H4k(03B52k(x), Q) and P(z) be as in
Proposition 2.3.6(i). Then

tv(x):=nL(v)2kP(x)ojv(Akv(x))
is an algebraic cycle on Ak(x) which represents the projection to
H4k(03B52k(x), Q) of the image in H4k(Ak( z), Q) of the fundamental class
of Akv(x).

(ii) Let H4k+2(M, Q) and P be as in Proposition 2.3.6(ii). Then for each
vEL+

is an algebraic cycle "of higher weight" on A which represents a class
in H4k+2(M, Q).

(iii) Further, for each positive integer n, let

as an "arithmetic cycle of higher weight", or a "Hirzebruch-Zagier
cycle of higher weight".

(iv) Formally we also let

where ci ( S ) is the first Chern class of S.
(v) When k = 0, then Tv : = Cv and Tn = : Cn are precisely the Hirze-

bruch-Zagier cycles on S, as in [HZ] [Kdl] [Cg] [HLR].
The picture to have in mind, then, is that Tv is an algebraic cycle with the
structure of a family of algebraic cycles tv (c) parameterized by Cv.
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3. Intersection multiplicities

In this section we compute the pairwise intersection multiplicities of the
algebraic and arithmetic cycles of higher weight, in the sense of rational
homology. The basic outline of the computation is simple: When Cu fl Cv all
their intersections are transverse, and the description (2.4.4) of Tv as a family
of algebraic cycles tv ( c) parameterized by Cv and the methods of [Kd 1 ] allow
us to describe (Tu · Tv) as a sum over the intersections of Cu with Cv, prop-
erly counted, of terms which represent the intersection multiplicities in the
fibers over those points; the hard work comes when we evaluate these ‘ ‘fiber
intersection multiplicities." Next we consider the case where Cu = Cv and
Tu is a rational multiple of Tv, first computing the intersection multiplicity
(Tu · Tv ) under the assumption that Cv is nonsingular, and then completing
the proof by showing as in [Kd 1 ] that the general case may be reduced to the
nonsingular one.

3.1. Before stating the main theorem, we need some notation. For u, v E Y,
let

Then D(u, v) is the discriminant of the restriction of q to the lattice generated
by u and v ; for u, v e L+, this binary quadratic form is positive definite if
and only if D(u, v)  0. On the other hand, as q is anisotropic, D(u, v) = 0
if and only if Qu = Qv, in which case q(u)q(v) is a rational square.

Also for u, v E V, let

where C12k(t) is the ultraspherical Gegenbauer polynomial [VI], Ch. IX,
(or any text on orthogonal polynomials), and u’ := (U,U)-1/2U E V(IEg) is
the unit vector in the u-direction for u j4 0. In particular, Q 2k (U, v) is a
spherical function in u and v with respect to q; it is homogeneous of
degree 2k in both u and v. Alternatively, P2k(r, n) is the coefficient of t2k in
(1 - rt + nt2)-1.
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Further, for u, v E L let

where ~(Z) denote the Euler characteristic of a nonsingular variety Z.
In the following, ( . ) will denote the intersection pairing, i.e., intersection

multiplicity in the sense of rational homology, of two middle-dimensional
algebraic cycles on a variety; implicitly, cycles may be identified with the
homology or cohomology classes they represent. Then the main result of this
section is the following.

THEOREM 3.2. For u, v E L+,

Before proving this theorem, we deduce the following corollary.

COROLLARY 3.3.

where r acts diagonally on L(m) x L(n).

Proof. For (i),

Part (ii) follows immediately.
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3.4. Turning toward the proof of Theorem 3.2, when we identify Xu and v
with the set of negative 2-planes in  orthogonal to u and v respectively, then
we readily deduce that

where x(u, v) := {u, v}~ E X. (These x(u, v) where D(u, v)  0 are called

"special points" in [HZ]; it is at these points that the fibers 4’(x(u, v»
have complex multiplication [Sa2].) Thus, when D(u, v)  0 the intersection
of Xu x Wk (R) with X, x W/ (R) may be identified with the intersec-
tion of W:(R) with Wk (R) in Wk(R), when Wk(R) is identified with
{x(u, v)} x Wk(R). On the other hand, when D(u, v) = 0, then Qu = Qv
and thus Xu x Wku(R) = Xv x W

LEMMA 3.5. If Cu ~ Cv, then

Proof. The following proof is based on [Kd1], Prop. 5 .1. Suppose that
Cu ~ Cv, i.e. that 039303C9 n Qv = 0. Then at every point p in Cu ~ Cv every
branch of Cu through p is transverse to every branch of Cv through p,
since the intersection of a pair of branches lifts via a local isomorphism to
an intersection of 03B3u with Xb, in a neighborhood of x(,yu, 03B4v) for some
03B3, 03B4 E r. Therefore

where iv : Sv ~ S as in (2.4.3). However, as Cu =f. Cv, there is a bijection

given by 03B3 ~ (su(x), sv(03B3-1x)), where x e X maps to p E S and
su : u ~ Su is the canonical projection. 0

PROPOSITION 3.6. For u, v E L+ with D(u, v)  0,
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where x = x(u, v) if D(u, v)  0, and x is any point of u = Xv
if D(u, v) = 0.

Proof. If we fix x as stated and then drop it from the notation, and divide
by (nL(u)nL(v))2k, then by (1.3.1) and (3.1.2) what we need to prove is that

To verify this, identify H4k(Ak, Q) with A 4kWk, as in (2.3); with this
identification the intersection pairing becomes the natural pairing

normalized by sending the (positively oriented) generator 11 of ̂ 8k^k to 1.
Then the projector P induces a G-equivariant projection P* : ^4kWk(R) ~
E2k, where E2k, the dual to E2k, occurs in ^4kWk(R) with multiplicity
one (2.3.5). So if we let 11v denote the positive generator of H4k(Akv, Z) ~
^4k(^kv) ~ Z, then

Now since Wk 1-1 2k(V(1,0)~ V(0,1)) and Y N V(1,0) ~ V(0,1) as G-modules
(1.4.6), while E2k rv V(2k,2k) (2.3), there is a unique G-submodule of A 4k Wk
which is isomorphic to V~2k, and which in turn contains E2k. So if we identify
this submodule with V02k, then we get the G-equivariant factorization

The next two lemmas will complete the proof of the proposition by describing
the effect of Pi and P2.

LEMMA 3.7.

(i) The restriction to V~2k, via Pl, of the intersection pairing (3.6.2) is the
biLinearform d( O)-k( , )o2k.

Proof. Let v E L+. Then the first step is to extend scalars to R and choose
coordinates "adapted to v" for Wk(R) and V(R) which we can use to make
the identification of V~2k with a submodule of A4e Wk explicit. Therefore, let
us fix an isomorphism (1.2.4) with Fi = R, which in turn induces diagrams
(1.2.5) and (1.4.4) with F = R. Then it is reasonable to put
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where M2,2k(R) denotes matrices with 2 rows and 2k columns, and the two
summands of Wk(R) are isotypic for the half-spin representations. Then
Gv(R) ~ SL2(R) and G(R) ~ SL2(R)x S L 2 (R) act naturally from the left.
Similarly we may define

by composing u - q(V)-1/2VU E C+(V(R)) with projection onto the first
factor of C+(V(IR)) ~ M2(R)~ M2(IR). Then q(u) = det M(u) and

for ui, U2 E V(R), while g e G(R) ~ SL2(R) X SL2(IR) acts as 1/;(g)(u) ==
g203BC(u)g1.
Now let W(i)n := SpanR{wi1n, wi2n} for i = 1, 2 and 1 ~ n ~ 2k,

where wimn is the (imn)- coordinate vector, and let V(n)(R) = V(R), for
1 ~ n ~ 2k, with coordinate vectors nj,. Then we factor Pi

where Pl is the natural projection onto a subspace, and Pl’ is given explicitly
by

Now we can calculate P1~jv*(~v). Since jv*(wmn) = w1mn + w2 , in
coordinates adapted to v,

Therefore we have

But Un + ul = 03BC(q(v)-1/2v), so (ii) is proved.
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To prove (i), we observe that a typical element of the image of Pl can be
2k 2

representedby ^ ( E ajlw1jn^w2ln). Thus it follows from (3 .7.4) and (3.7.3)
n=1 j,l=1

that the transport of the intersection pairing to the image of Pl is a scalar
multiple of (,)~2k. Then the correct scalar is determined by the normaliza-
tion of the intersection pairing (3.6.2) and the fact that ~ = d(O)k ^ wimn.~

The following lemma was very kindly pointed out to us by John Millson.

LEMMA 3.8 (Millson). Let P2 : V~2k ~ É2k as in (3.6.4). Then for
u, v E L+ with D(u, v)  0,

Proof. In order to do this computation, we identify E2k(R) with

H2k(V(R)), the space of homogeneous polynomials of degree 2k on V(R)
which are harmonic with respect to the Laplacian A associated to the bilinear
form ( , ). In [VI], Ch. IX, for example, it is shown that every irreducible
class-one representation of SO(n) is equivalent to a representation on a space
of homogeneous harmonic polynomials, and then the Weyl unitary trick [Va]
can be used to transport this result to the special orthogonal group of an
indefinite form. Since the representation of G on E2k factors through (the
connected component of) SO(V), by verifying the equality of their dimen-
sions we get E2k(R) ~ H2k(V(R)) as G(R)-modules. Note, too, that as
these are irreducible G-representations, they carry a unique-up-to-homothety
G-invariant bilinear form, which we normalize by restricting the intersection
pairing ( , ) to 2k(R), and then with this pairing, identify E2k(R) with
both E2k (IR) and H2k(V(R)) in such a way that the pairings of corresponding
elements are equal.

Similarly, the form ( , ) induces an isomorphism V(R) ~ (R), defined
by v H fv := (u ~ (u, v)), such that (u, v) = (fu, Thus we get the
following factorization of P2:

here S2ky denotes the space of symmetric tensors of  of degree 2k, which
may also be thought of as the space of homogeneous polynomials of degree 2 k
on V ; and the harmonic projection fj, which exists for the same reasons as in
the definite case, see [VI], Ch. IX, is given explicitly by
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[VI], IX.2.5(15).
Now we claim that ~~(f2ku), ~(f2kv)~ = ~(f2kv)(u). Since ~ is a projection,

~~(f2ku), ~(f2kv)~=~f2ku, ~(f2ku)~.
On the other hand, H2k(V(R)), indeed S2k(R) as well, is generated
by monomials of the form f = fv1 ··· fv2k with v1,...v2k ~ V(R). But
then from the definition of Iv determined by the choice of isomorphism
V(R) ~ (R) we find that

To complete the proof it remains only to check that

But this is straightforward to compute from the formula for D given
above; or one may choose a basis {v1,...,v4 == v’} for V(R) such that
( Vi, Vj) = (-1)i03B4ij, with associated coordinate functions xi(u) := (u, Vi)
and Laplacian A == 03A3and then apply verbatim the computations
of [VI], Chapter IX, sections 2.3, 2.5 and 3.1. D

This completes the proof of Proposition 3.6. D

PROPOSITION 3.9. When u, v e L+, if Cu = C, and is nonsingular, then

Proof. The idea of the proof is this: Since Tu and Tv are rational

multiples of each other, the basic issue is to compute the self-intersection
multiplicity of Tv. Let Y be an irreducible subvariety of A occuring in the
support of Tv . Then to evaluate (Y . Y ) we will compute the top Chem
class C2k+1(vY) of its normal bundle by putting suitable coordinates on A;
what we will find is that the normal bundle is the Whitney sum of two bundles,
vy = vCv~vy, where y is the irreducible subvariety of Ak(x) corresponding
to Y occuring in the support of tv (x) [Hi], (1.4.1.4). It will then follow that
c2k+1(vY) = c1(vCv)c2k(vy), from which we will deduce that

Finally we will check that (Cu· Cv ) = ~(Sv), which together with Proposi-
tion 3.6 will complete the proof.
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To begin the proof an alternate description of T, will be useful. First
observe that when x e v, then A(x) is isomorphic to Av(x) x 4, (x): They
are isomorphic as differentiable tori by (1.3.1(i)) and (1.2.3), and as complex
tori because the equivalence (u, W)|Gv ~ (uv, Wv) ~ (uv, Wv ) is induced
by (1.2.3), so that the complex structures 03C3(j(x)) and 03C3v(j(x)) x 03C3v(j(x))
are compatible as well (2.2.2). Let 03B1v : A2kv(x) ~ Ak(x) denote such
an isomorphism, with x e v. Then 03B1-1v(tv(x)) is an algebraic cycle t’v(x)
on A" (x); indeed, 03B1-1v~jv(Akv(x)) (2.4.3) sits diagonally in A2k(X ), and t’ (x)
may be obtained by applying the projector 03B1-1v(P(x)) to 03B1-1v~jv(Akv(x)).
Furthermore, with the assumption that Cv is nonsingular, iv : Sv ~ S is an
isomorphism of Sv onto Cv, so we may identify the restriction of A to Cv,
i.e. ~-1(Cv), with the pullback of A over Sv and with A(2k)v, in the notation
of (2.4.1). Then Tv pulls back to an algebraic cycle T; on A(2k)v which has the
structure of a family of algebraic cycles t’v ( s ) parameterized by Sv.
Now let so be a generic point of Sv, and write t’v(s0) = 03A3aiyi(s0)

(finite sum) as an algebraic cycle, with the yi(s0) irreducible subvarieties
of A(2k)v(s0) and the ai e Q. Then correspondingly T’v = 03A3aiYi, where
Y is the closure with respect to so of yi(s0) in A(2k)v; this reflects the
basic relationship between the projectors P(so) and P of (2.3.6) [Go], (2.B).
(Equivalently, Y is the subvariety of A(2k)v whose intersection with any
Alk(3) is the specialization to s of yi(s0).) Letting Y (resp. y(s)) stand for
any one of the Y (resp. yi(s)), we can summarize the discussion so far in the
following commutative diagram.

Under the asumption that Cv is nonsingular, h(2k)v and Ív are embeddings, and
Y and y(s) are also nonsingular. Letting h : = h’~h(2k)v, we wish to compute
(h(Y)·h(Y)).

To do so we choose explicit coordinates for A and Ai2k), adapted to v as
in the proof of Lemma 3.7. Indeed, we may fix an isomorphism (1.2.4) with
Fi = R and corresponding diagrams (1.2.5) and (1.4.4) as we did there, and
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again use the coordinates (3.7.1) for Wk(R). From (1.4.4) we also get

where Bj denotes the complex upper half-plane, on which SL2(R) acts by
linear fractional transformation. Putting a complex structure J(x) on Wk(R)
as in (2.2), with x = (Tl, r2) E X, gives us complex coordinates

[Kgl] [KS]. In these coordinates G(R) acts holomorphically on the complex
space   Wk(R) by

where j(03B3, T ) : = cT + d when -f (a 1
Now following [Hi], Ch. I, we consider the normal bundle vy of Y in A.

When we identify S with the zero section of A, then (3.9.5) makes it clear that
the tangent bundle 03B8S of S is naturally a subbundle of the tangent bundle 0A
of A; likewise, 03B8Sv is a subbundle of 03B8A(2k)v and of 03B8Y. It follows that vy
contains the normal bundle vSv of Sv in S as a subbundle. If we now view the
objects in (3.9.2) as oriented differentiable or almost complex manifolds [Hi],
(1.4.6) and (1.4.9), rather than as complex manifolds, then there is a splitting
vy = vSv ~ vy as a Whitney sum [Hi], (1.4.1.4), where vy is the normal
bundle of y in A2k (at any point iv(s)). It then follows from the formalism
of the Chem class [Hi], (1.4.4), (or of the Euler class [Hi], (1.4.11), in the
differentiable category,) that C2k+1(vY) = c1(vSv)~ c2k(vy), as these are the
Chem classes of highest degree in each case. Indeed, this factorization reflects
the factorization H4k+2(Y, Q) ~ H2(Sv, Q) Et) H4k(y, Q), which we have
because H4k(y, Q) is a trivial r 17 -module, since the class in H4k(A2kv(s0), Q)
represented by y is algebraic and therefore Gv -invariant [Kg]. Similarly in
H0(Y,Q) ~ H0(Sv, Q) ~ H0(y, Q) we have 1Y = 1Sv ~ 1y. Therefore, since
the pullback h* of the class in H4k+2(A, Q) represented by Y is c2k+1(vY)
[Hi], (1.4.11(18)), we have

Since Cu = Cv and Tv = 03A3aiYi and tv == I: ai Yi, and similarly for Tu
and tu, this proves (3.9.1).

Since Proposition 3.6 applies even when Cu = Cv , it remains only to check
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that (Cv. Cv) = X(Sv); by [Hi], (1.4.10), (1.4.11), this will be true if

Cl(Vsu) = c1(03B8sv), i.e., if vsv ~ Osu. (An alternate proof would be to use the
adjunction formula [GH].) In the coordinates of (3.9.3) we have

with Gv(R) embedding diagonally in G(R) (1.4.4). Therefore vSv =

i*v03B8S/03B8Sv~03B8Sv. 0

Now Theorem 3.2 will follow from Lemma 3.5, Proposition 3.6 and the
following lemma.

LEMMA 3.10. If Cu = C", then

Proof. Since Tu is a rational multiple of Tv when Cu = Cv, it suffices
to verify the formula for u = v E L+. The following proof is adapted from
[Kd1], Proposition 5.2. Since the issue is to compute (Tv. Tv ) when Cv and
therefore Tv has singularities, we lift the problem to a normal cover ~
of A~S where the cycles ë v and v lying over Cv and Tv respectively are
nonsingular, and there we apply Proposition (3.9).

To desingularize C’" first observe that all its singularities are normal self-
crossings which occur when elements of r identify points of X, which are
not identified by 0393v. Let

then just as in Lemma 3.5, there is a bijection between the set of these
transverse crossings, counted with multiplicities, and 0393vB0394v/0393v. Now, since
this set is finite, we may choose an integer m such that 03B4v~v (mod mL)
for all 8 in a set of representatives of 0393vB0394v /rv . Let

normal and of finite index in 0393, and correspondingly, let S : := B, and
v := Gv n fi, and v := vBv; then Cv may be defined equivalently
as the image of v in S, or as the image of S 11 in , or as the inverse
image of Cv with respect to the covering map ~ S. Furthermore, ë v
is nonsingular. For as before its singularities biject with vBv/v, where
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v:={03B3 E r : D (v, y v)  0}.But v is empty, for if 03B4 E v, then 03B4 e Av
and bv - v (mod mL), but it follows from the choice of m that bv 0 v
(mod mL) for all 6 e Av. Therefore, if we let Ã : := Î K A"BX X Wk(R),
as in (2.2.1 ), then the (algebraic) cycle Tv to which Tv pulls back via  ~ A
is also nonsingular.

Now let (r : r ) denote the degree of  ~ A or of É - S, and
similarly iv := (0393v : v) the degree of Év - Sv. Then v consists of
vv := gliv distinct cycles T’vi, where vi = 03B3iv as yi runs through a set of

representatives for rBr/rv, and T’vi is defined analogously to Tv but on .
Then

Assuming, as we may, that vi = v, from Proposition 3.9 we get

On the other hand, using (3.5) and (3.6),

Now recall that r was chosen so that A, = 0, and that vj = 03B3jv for y;
running over a set of representatives for B0393/0393v. Therefore

from which it follows that
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Combining this with (3.10.1), we have

Next we observe that 0393v/v acts freely on vB0394v/0393v. For if 03B3~0393v and
6 e 0394v are such that 03B3v03B40393v = f v6r v, then there exist Il’12 E f v such that
7i772 fixes 6r v. But then 111/2 fixes x(v, 03B4v), which implies that it equals 1
and that -y E Ê,, since r acts freely on X. Therefore

as required. 0

4. Harmonic Poincare dual forms

In this section we observe, fôllowing [Kgl], that there is an inner prod-
uct preserving isomorphism from a space of modular forms for r to the
space H4k+2(M, C) of harmonic differential forms on A representing classes
in H4k+2(M, C). Then we describe the harmonic differential form on A
Poincare dual to Tv, for k &#x3E; 0, and use this form to obtain an alternate proof
for Theorem 3.2 in the case k &#x3E; 0; for the harmonic Poincare dual form in
the case k = 0, see [KM4j.

4.1. Throughout this section we will use the complex coordinates

described in (3.9.3) and (3.9.4), with the holomorphic action of G(R) as
in (3.9.5). We will also identify V(R) with M2(R) as in (3.7.2) whenever
necessary. Recall that all these coordinates depend on a choice of v e V(R)
with q(v) &#x3E; 0.

4.1.1. In order to describe the Riemannian metric on .A as a complex projective
variety whose fibers over S are polarized abelian varieties, it will be helpful
to normalize the polarization chosen in (2.2). Recall that it was defined
on c1, c2 E W(R) by (3(Cl, C2) := trC+(V(R))/R(bc1c2), where the nonzero
b e C+(V) satisfied an integrality condition, a positivity condition, and
b = -b. It follows that the characteristic polynomial of b over the center
Q(() of C+(V) is X2 + il for some totally positive y E Q(03B6). Thus if
we let a - 03B1(i) for i = 1,2 denote the embeddings Q(03B6) ~ R induced
by (1.2.3), then we may choose b so that (1.2.5) yields the identification
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moreover, this identification is compatible with our coordinatization of W (1R).
Now let T = x + y~-1 and z = 03BE + ~~-1. Then just as in [Kg1], IV-1(49),
the Riemannian metric on A is

More precisely, this metric on S5 x -ç5 x C2k x C2k is G(R)  Wk(R)-invariant
and therefore descends to a metric on A. Let H* (A, C) denote the space of
differential forms on A which are harmonic with respect to this metric, where
we identify differential forms on A with F x Ak -invariant differential forms
on ~ x 5  C2k X C2k.

4.1.2. Let ~+ := ~ and let Sj- denote the complex lower half-plane, and
with s 1 and s2 designating elements of {+, -}, let ~s1s2 : = Sj’l x ~s2. Then
viewing 0393 as a discrete arithmetic subgroup of G(R) ~ SL2(R)xSL2(R),let
Ss1s22k+2(0393) denote the space of holomorphic modular forms of weight 2k + 2
on ~s1s2 with respect to r; that is, f E Ss1s22k+2(0393) iff ,f is a holomorphic
function on ~s1s2 with the property that for all (Tl , T2 ) in that domain and all
(03B31, 03B32) ~ 0393

where j(03B3, 03C4) = c03C4 + d when y = 1). Clearly S2k+2(0393) (resp. S-+2k+2(0393))
is complex conjugate to S++2k+2(0393) (resp. Sik+2(r)), and moreover it is known
that all four of the Ss1s22k+2(0393) have the same dimension [MS].

There is an inner product on the space of modular forms: For f and g in
the same Ss1s22k+2(0393), their Petersson inner product is defined by

where Fs1s2 is a fundamental domain for F on Sj’I’2, and dVi: = Yi-2dzidYi
is the G(i)-invariant measure on ~si, for i = 1, 2.

4.1.4. Now in the manner of [Kg1], 11-3, we may define a linear map w from
03A3 Ss1s22k+2(0393) to differential (4k + 2)-forms on A by
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and 03C9(f) := 03C9(f) if f ~ S-+2k+2(0393) or S2k+2(0393). Here dzi := dzi1 ... dz2k for
i = 1, 2 ; recall also that D = d(O)1/2 (1.3.1(ii)).

PROPOSITION 4.2. When k &#x3E; 0, then W maps E Ss1s22k+2(0393) iso-

morphically onto 1t4k+2(M, C). If k - 0 the image of 03C9 in H2(S,C)
has codimension two, and its orthogonal complement is generated by
úJi := (403C0~-1)-1y-2id03C4idi for i = 1, 2. Fu rtherm0 re, úJ is an isome-

try in the sense that

Proof. The first two sentences are implicit in [Kg1] and [MS]. For w may
be factored

where 2k is the vector bundle over S associated to E2k. That the first arrow
is an isomorphism for k &#x3E; 0 and has an image of codimension two with the
indicated orthogonal complement when = 0 is proved in [MS], while the
injectivity of the second arrow is proved in [Kg1]; and then it follows that the
image is H4k+2(M, C). To prove the last sentence, we first observe that

Then if f, g E S+-2k+2(0393), for example,

and the other cases may be computed similarly.
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As a special case, since p( v) == q(v)1/2I we have

In general it may be checked that bu(Tl, T2) is holomorphic on ~+- and that
for g E G(R)

From this and the cocycle relation j(03B303B3’, 03C4) = j(03B3, 03B3’03C4)j(03B3’, 03C4) it follows
that

Then wu is the harmonic di,fferential form on A Poincare dual to the cycle Tu.

Proof. For computational simplicity we may take u = v, and show

that the cap product of ri with Tv equals the cup product of ~ with wv
for any q E 1t* (A, C). However, both Tv and wv lie in the dual space
to 1t4k+2(M, C), and pair nontrivially only with forms of Hodge type
(2k + 1, 2k + 1), so we may assume that q is an element of

Therefore without loss of generality we may assume 11 = w(f) + w(g) with
f~S+-2k+2(0393) and g~S-+2k+2(0393).

By construction hv(Av) is homologically equivalent to nL( v )-2kTv plus
something orthogonal to 1t* (M, C). Therefore, recalling that in coordinates
adapted to v all three horizontal arrows of (2.4.3) are realized as diagonal
maps,



35

where dz = dzi ... dZ2k. Since similarly to (4.2.2) the inner integral on the
second line equals 22kd(Ov)ky2k, the last line follows from (1.3.1(ii)).

On the other hand, from the definition of 03C9v and (4.2.1 )

Therefore what we need to show is that

and similarly for (g, 03B8v). However, this may be proved in exactly the same
way as [Z2], Theorem 6: Since Im(ï(r)) = Im(03C4)|j(03B3,03C4)|-2, from (4.3.2)
and the definition of 0, we get

where after interchanging the order of summation and integration we have
chosen a fundamental domain for 0393v in ~+- of the form F, x ~-. But now
it follows from [Z3], p. 46, (note that here we are integrating over ~-) that
the inner integral equals c-1k f(03C41, 03C41), and this completes the proof. D

REMARK 4.4.3. Presumeably the definition of 0,, and the result of Theo-
rem 4.4 could be extended to the case k = 0 by considering

as in [Z1] appendix 1; see also [KM4].

4.5. We can now sketch an altemate proof of Theorem 3.2, for the case k &#x3E; 0,
by evaluating the cap product cvu n T,. The actual computations reduce to those
in the proof of the Eichler-Selberg trace formula for SL2(Z) in [Z3 ], reflecting
the close analogy between the cycles Tn and the Hecke correspondences for
a modular curve (cf. [HZ]), and the fact that SL2(Q) x SL2(Q) and G (as
well as SL2(Q(~D)) for nonsquare D &#x3E; 0, [HZ]) are both (all) rational
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forms of the same real group, making them indistinguishable when scalars
are extended to R and C°° -coordinates are chosen.

Computing as before with coordinates adapted to v,

where R(03C4, u) := (bu(03C4, 03C4)Im(03C4))2k+2 as in (4.3). In particular, it follows
from (4.3.2) that

R(03C4, 03C8(03B3)(u)) = R(03B303C4, u) (4.5.2)

for y E rv, since r v sits diagonally in 0393.

Now we observe that any coset ,ruE r Ir u belongs to a unique double
coset rv B6 Ir u E 0393vB0393/0393u; and if we let e : := y6-’ e 0393v, then replacing
by yy’ with y’ e ru replaces e by £( 6,’6-1) with (03B403B3’03B4-1) E r v n 039303C8(03B4)(u).
In view of (4.5.2), then

Furthermore, when &#x3E; 0 this sum converges uniformly on compact sets.
Thus we may substitute (4.5.3) into (4.5.1) and interchange the order of
summation and integration to get
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Next we observe that unless Qu = Qv, in which case F, = 0393u, then
0393u ~0393v is a torsion-free subgroup of the group of integral units in

Therefore

for a unit e of infinite order in the real quadratic field Q( VD( u, v)D). Hence
it is natural to divide the sum in (4.5.4) into three pieces, corresponding to
the cases of (4.5.5), and evaluate the integral in each case.

To do this, let 5 := q(V)-1/2V, represented in coordinates by the 2 by 2
identity matrix, let u be represented by (ac bd), and let t = (u, v) = a + d
(3.7.3). Then

Hence it follows immediately from the computations in [Z3], Theorem 2,
cases 1 and 4, that

On the other hand, if D(u, v) = 0, then u = q( U )1/2V, whence

l J i J (-1)k+12-(2k+2)q(u)-(k+1).
However, in this case Q2k( u, v) = (2k + 1)q(u)kq(v)k. Hence

ckq(v)kq(u)2k+1 (R(t, u)+R(t,u))dV=~(Sv)Q2k(u, v), (4.5.7)

since

Now Theorem 3.2 follows by putting (4.5.6) and (4.5.7) into (4.5.4).
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5. Modular Forms of Nebentypus

In this section we apply the results of Kudla and Millson [Mi3] ] [KM6] and
Eichler and Zagier [EZ] to deduce that the Fourier series generating function
for the intersection multiplicities of the Tn with a fixed Tm is an elliptic
modular form of weight 2k + 2 with the level and character of the lattice L.

5.1. Following Hecke [He], recall that the level of L is the least positive
integer N such that NB-1 is again an even integral form on L, where B is the
matrix representing the bilinear form ( , ) on L with respect to some Z-basis.
Note that the level N and the discriminant D are divisible by the same
primes. Recall also that the character e associated to q and L is the quadratic
character of modulus N induced by the character (disc(Q(~D)) ~) associated to
the field Q(~D).

5.1.1. As usual, we let

Then an elliptic modular form of weight m, level N and character e is a
holomorphic function f:~ - C such that

where j(y, r) is as in (4.1.2). An elliptic modular form is of Nebentypus if e
is nontrivial (otherwise of Haupttypus) [He]. If the limit in (ii) is 0 for all

a E SL2(Z), then f is said to be a cusp fortit. As usual, we will denote the
spece of modular forms of weight m, level N and character e by Mm(03930(N), e)
and the subspace of cusp forms by S",(ro(N), s).

5.1.2. Recall also that the Siegel upper half-plane of genus 2 is the set ~2 of
symmetric Z e M2(() with positive definite imaginary part, on which an
element-y = ( C A D -8 ) e Sp4(R) acts by Z - (AZ + B)(CZ + D)-1. Let

Then a Siegel modular form of genus 2, weight m, level N and character e
is a holomorphic function 03A6: 5)2 - C such that

03A6(03B3(Z)) = e(det D) det(CZ + D)m03A6(Z)

for 7 E 0393(2)0(N). By Kocher’s theorem [Car] [F], a Siegel modular form will
have a Fourier series of the form 03A6(Z) = 03A3 r(A) exp(7ri tr AZ), where the

A z0
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sum is taken only over positive semidefinite even A e M2(Z).

PROPOSITION 5.2. For u v ~ L, let A(u, v) := ((u,u)(v,u) (u,v)(v,v)), and let

v(u, v) be as in (3.1.4). Then

is a Siegel moduLar form of genus 2, weight 2, level N and character e, where
N and e are the level and character of L.

Proof. Let le,, e2, e3, e4} be a basis of V(R) such that

let ( , )’ be the positive definite form on V(R) defined by ( ez, ej)’: = 03B4ij and
let A’(u, v) = ((u,u)’(v,u)’ (u,v)’(v,v)’). Then it follows from [Mi3] [KM6] that (p (Z)
is a Siegel modular form of genus 2 and weight 2, and from [KM4] that it has
the same level and character as

However, the level and character of 03A6’ are computed in [LV], Theo-
rem 2.6.22(a), to be those of ( L, ( , Y), which equal those of (L,(,)).
o

Observe that 03A6’ is the theta function for representations of binary quadratic
forms by the positive definite lattice (L, ( , )’ ) [F], and similarly 03A6 is the theta
function for r-inequivalent representations of positive semidefinite binary
quadratic forms by the indefinite lattice (L, ( , )). The proof of the next
theorem shows that 03A6 has somehow encoded within it all the intersection

multiplicities for all the arithmetic cycles of all weights k ~ 0.

THEOREM 5.3. Let 0  m, k E Z and let N and e be the level and character
of L. Then

is an elliptic modular form of weight 2k + 2, level N and character E.

Moreover, if k &#x3E; 0 then Fk,m is a cusp form.
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Proof. Let Z = (tz zt’) ~ .s)2, with r, T’ ~ ~ and z e C, and consider the
Fourier-Jacobi expansion of 03A6 [PS] [EZ], Theorem 6.1, with respect to r’ ,

Then ~m(t, z) is a Jacobi form of weight 2 and index m, with level N
and character e in the sense of [EZ], meaning that p : Ej x C - C is a
holomorphic function such that:

has a Fourier expansion of the form

for ( a g ) e SL2(Z). From the definition of rp in Proposition 5.2 we have

with

In particular F0,m(t) = ~m(t,0) E M2(03930(N), 03B5), which proves the theorem
when k = 0. In general

using Corollary 3.3(ii) and the definitions of Q2k(u, v) and P2k(r, mn)
in (3.1.2) and (3.1.3) respectively. But now Theorem 5.3 follows as a spe-
cial case of [EZ], Theorem 3.1, where it is shown more generally that this
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"kth development coefficient" of a Jacobi form of weight 2 is an elliptic
modular form of weight 2k + 2, and a cusp form if k &#x3E; 0; although [EZ]
consider only Jacobi forms of Haupttypus, their same proofs work for forms
of Nebentypus. D
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