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1. Introduction

Let A be an abelian variety of dimension d with complex multiplication by a
CM-field K of degree 2d. The Mumford-Tate group MA is a subgroup of K*
thought of as a torus over Q. Consider the following two conditions

(i) dim(MA) = d + 1,
(ii) The ring of Hodge cycles on A is generated by classes of divisors.

In a paper by Pohlmann ([2], Theorem 1) there is an explicit criterion on the sets
gS, g E Gal(/) (where (K, S) is the CM-type of A) for which the divisor classes
in H1,1(A, C)nH2(A, Q) do not generate the Hodge ring on A. The criterion of
Pohlmann immediately shows that (i) implies (ii). Between 1977 and 1978, K.
Ribet asked whether (i) and (ii) were equivalent. H. W. Lenstra, Jr., quickly
showed that the conditions were indeed equivalent under the supplementary
hypothesis that K is abelian over Q (see Theorem 3). The purpose of this article
is to construct an explicit example giving a negative answer to the general
question; namely there exists a CM abelian variety not satisfying (i) but

satisfying (ii).
We start with some definitions. A CM-field K is a totally complex field of

degree two over a totally real field Ko. We assume K is of degree 2d and that K is
a (maximal) subfield of End(A) (x) Q for some CM abelian variety A of degree d.
Let L be the Galois closure of K and put G = Gal(L/Q), H = Gal(L/K). The
group G has a natural left action on the field K which identifies the embeddings
of K with GIH and the distinguished involution c induced by complex
conjugation acts on G/H. A CM-type is a pair (K, S), where

S = {03C31,...,03C3d} ~ G/H is a choice of representatives for the action of c. Define
IF: K ~ Cd by 03A8(x) = (03C31x,..., 03C3dx). An abelian variety A defined over C is of
CM-type (K, 9) if A n/03A8(L) for some lattice L in K (rank 2d over Q) and if the
action of K on A is induced by IF.

Let A be any abelian variety of CM-type (K, S). From Pohlmann’s paper ([2],
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Theorem 1) on algebraic cycles, subsets A c G/H such that

correspond to one dimensional C-vector spaces ("lines") in

which are not generated by cup products from Hl,l(A, C) n H2(A, Q) Q C. We
call such subsets sporadic. Clearly condition (ii) for any abelian variety A of CM-
type (K, S) is equivalent to the absence of any sporadic A. We prove the
following theorem.

THEOREM 1. There exists a CM-type (K, S) with no sporadic subsets A whose
Mumford-Tate group has rank less than d + 1.

In fact we construct a specific counterexample with K Galois with Galois group
G=Z/2 /2Z Z/5Z D5. The construction is reduced to finding a zero
divisor of Q[GJ with the correct properties. We review the cohomology theory
of A and define the Mumford-Tate group, showing the rank is the rank of an
easily computed submodule of the group ring Q[G].

2. The cohomology

This section reviews without proof some of the basic facts about the coho-
mology of abelian varieties. Let V = d and assume A ~ V/A where A is a rank
2d Z-lattice in C’. Elementary topology tells us that H1(A, 7) = A and it is not
hard to verify that

and

respectively. The equality V = A 0 R extends maps ~: A - Q uniquely to R-
linear maps ~:V~. This defines an injection of H1(A,) into H 1 (A, C).
Define U = Homc(K C), then there is a natural decomposition
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where tl are the complex congugate maps, e.g. ~ E LI if ~(03BBx) = 03BB~(x) for all x E v
ÀEC.

The higher cohomology groups are generated by wedge products of the first

cohomology group. Thus

and

Again there is a natural inclusion Hn(A, ) into Hn(A, C). The image elements by
this inclusion are called rational cycles. The decomposition H 1 (A, C) = U EB a
induces a decomposition

where Hp’q = A PU Q ̂  qU. Define,

In particular, elements of Hp,p(A, Q) are commonly called Hodge cycles. If X is
codimension p subvariety of A, then X corresponds naturally to a cycle in
Hp,p(A, Q). These cycles are called algebraic cycles. The Hodge conjecture states
that the algebraic cycles span Hp,p(A, Q). Of course for p = 1, it is well known
that Hl,l(A, Q) is spanned by the image of divisors. It is the case p &#x3E; 1 which is

of interest.

The cohomology groups H"(A, ) and Hn(A, C) have a natural cup product
structure induced by the wedge product, a ~ 03B2 = a A 03B2. For example, the group
ED d p Hp,p(A, Q) combined with this cup product structure is commonly known
as the Hodge ring. Under cup products H1,1 generates Hp,p. The question is:
when does H1,1(A, Q) generate Hp,p(A, Q)? We may not be able to answer this
question in general but we do get an obvious definition. A Hodge cycle in
Hp’p is sporadic if it is not generated from Hl,l(A, Q). If we assume A is of CM-
type (K, S) then Pohlmann ([2], Theorem 1) proves sporadic subsets with p
elements exist if and only if sporadic cycles in Hp’p exist. So sporadic subsets for
CM abelian varieties can be characterized in terms of their CM-type (K, S). As a
side remark, since cup products of algebraic cycles correspond to intersections of
algebraic varieties, if A has no sporadic cycles then the Hodge conjecture holds
for A.
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3. The Mumford-Tate group

Let W = H1(A, Q) and W* = Hom(W, Q) ~ H1(A, Q). The space W = W Q C
decomposes into

where 03BB · x = 2x for 03BB e C and x E v Define t~V to have bidegree ( -1, 0) and
tE V to have bidegree (0, -1). Given any -vector space of the form

this definition induces a natural bidegree structure on

Let Dr,s ~ De consist of elements of bidegree (r, s) and define

Any element a E GL(W) induces an action on D. We say a is a Hodge invariant if
there exists 03BB~Q* such that for every D and nonempty Dp°p (p E 7L)

The subgroup of Hodge invariants in GL(W) is the Mumford-Tate group MA.
If A is polarizable (admits an embedding into projective space), then by

Deligne ([1], Proposition 3.4) MA is an algebraic group over O1. In this case, we
can characterize the Mumford-Tate group by its action on the (p, p) part of the

cohomology of the powers A" of A. We give details below.
To be polarizable means there exists a bilinear form

satisfying

(a) E(x, y) = -E(y, x),
(b) E(ix, y) = - E(x, iy),
(c) E (x, y)~Z if x, y~,
(d) E is non-degenerate, i.e. det E ~ 0.

The Q-module W is canonically isomorphic to the submodule A (x) Q in V and
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thus E defines an alternating form

This alternating form extends naturally to a non-degenerate skew Hermitian
form

by using the relation

for x ~ 03B1, 03B3 ~ 03B2 ~W ~  = W. (The form iS 1 . is the usual hermitian form H on
V). It is simple to verify that

so the isomorphism

induced by E preserves the bidegree structure. In other words, algebraic
elements of bidegree (p, p) (note that 2p = n - m) in

correspond "naturally" by E to algebraic elements of bidegree (p + m, p + m) in

But W*~n embeds naturally into Hn(An, Q). Conversely every cohomology
group Hr(An, Q) embeds into ~ni=1 W*~r. Thus the spaces D can be substituted
by the cohomology groups Hr(A", Q) when calculating MA. An element oc in

GL(W) is a Hodge invariant if and only if there exists E Q* such that for every
n &#x3E; 0,

ax = 03BB-px whenever x e Hp°p(A", Q).

Hence, MA is the algebraic subgroup of GL(W) that acts as scalars on the Hodge
ring of the powers of A.
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Now assume A is of CM-type (K, S). Then K* has natural action on

W xé A (x) Q giving an injection of K* into GL(W). Furthermore the CM-type
(K, S) induces a natural polarization

where 03B2 is any totally imaginary element of K. We will describe MA explicitly.
For example, the description will imply that MA ~ Kt where

K*Q = {x| x E K*, xx E Q}, with equality only if MA is maximal. In particular MA
is an algebraic subgroup of K*, i.e. a torus. 

Let S be the inverse image of S in G. Assume that the pair (K, S) is simple,
which means we have the equality

It is an exercise to show that (K, S) is simple if and only if every sporadic A (see
Definition in Section 1) satisfies

Of course this means that any CM-type satisfying the conditions of Theorem 1 is
simple.

Let T = S -1 (the set of inverses of elements of S), and set

Let F be the fixed field of H’ and T the image of T in G/H’. Then F is a CM field,
and (F, T) is a CM-type, called the dual type (i.e. dual to (K, S)). The groups K*
and F* can be thought of as tori over Q. If we let TK and TF denote these
algebraic groups, we can define an algebraic morphism Ni: TF ~ TK by the
formula

THEOREM 2. The image of NT is the Mumford-Tate group of A.
Proof. Too involved to prove here. See Deligne ([1], Example 3.7) for a

computation of MA in terms of cocharacters. D

In this paper we are only interested in the rank of MA. Since computing the
rank of the image of NT directly is difficult, we compute the rank of the pull-back
N*T on the duals instead.
The character groups X K and X F on TK and TF are just the free abelian
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groups on the embeddings of K and F respectively (see Serre [4]). In terms of
characters, NT induces a map NT : XK ~ XF given by the formula

Its image will have the same rank as MA. We observe that the left Q[G]-
submodule generated by the image of N*T in X K (x) Q is isomorphic to the
submodule generated by T in Q [G] (we identify T with the formal sum of its
elements as we do with all subsets of G). Thus the latter module’s rank is the
same as the rank of the Mumford-Tate group. Likewise the left Q[G]-
submodule generated by S, or equivalently the right Q[G]-submodule gen-
erated by T, has the same rank as the rank of the Mumford-Tate group of the
dual CM-type (F, T).

These are the submodules we use when computing the rank of the Mumford-
Tate group. They are particularly tractable because they are submodules of a
group ring. For example, this characterization makes it easy to prove the

following result.

LEMMA 1. The rank of the Mumford-Tate group of a CM-type and its dual is the
same.

Proof. Let M be the left Q [G]-submodule generated by T and N the right
Q [G]-submodule generated by T. We show that rank(M) = rank(N). The rank
of M and N do not change if we tensor with any algebraically closed field, say C
for example. But Q[G] ~ C = [G] = ~ Vi where each Vi ~ M (ni) is a matrix
algebra over C. Thus T = E T with each T E Vi. The rank of the left (right) C [G]-
submodule generated by T is the sum of the ranks of the left (right) C [G]-
submodules generated by T in g. But T lies inside a M(ni), so by simple linear
algebra the left and right Q [G]-submodules generated by T have the same rank.
Therefore rank(M) = rank(N). D

In the future we use the left Q[G]-submodule M generated by S when

computing the rank of the Mumford-Tate group. We have the following nice
condition for when M is maximal. Let

where tG = 03A3g~G g is the trace element and define

Then M ~ Mo and M is of maximal rank, i.e. rank M = dim A + 1, if and only if
M = Mo.
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4. The case K Galois

Since we are trying to create a counterexample, a special case will do as well as
the general case. Specifically assume K is Galois, or equivalently that H is trivial
and S = S, Mo = Mo.
We factor 0 [G] as

where

Note that the component of A and S in Q[G]- are 0394-c0394 and S - cS

respectively. Thus the two conditions for a sporadic A can be reinterpreted in the
ring Q [G] - as

We have converted the question of the existence of sporadic cycles into a
question about the existence of certain zero divisors in a group ring. Any
element of Q [G] - whose coefficients are all + 1 can be put in the form S - cS.
Similarly, any element whose coefficients are 0, + 1 can put in the form

0394-1-c0394-1. If the product of the two is zero then the elements correspond to a
CM-type for which there exists a sporadic cycle. If no such A - 1 - c0394-1 exists for
a specific choice of S - cS then the ring of Hodge cycles of any associated abelian
variety A is generated by the classes of divisors.
However, if we consider higher powers A" of A, a sporadic cycle on A" would

correspond to a right annihilator of S - cS in Q [G] - whose coefficients are
0, ± 1,..., ± n. Thus if S - cS is not a G-module generator of Q[G]- or

equivalently has a right annihilator then there exists a high enough power A"
such that A" has a sporadic cycle.

This is particularly helpful because of the following lemma.

LEMMA 2. Let (K, S) be a Galois CM-type with Galois group G and central
involution c. The rank of the corresponding Mumford-Tate group is maximal if and
only if S - cS is a G-module generator of Q[G]-.

Proof. Simple algebra shows that the condition M = M0( = Mo) is equivalent
to the condition Q[G]-(S-cS)=Q[G]-. D

In particular if rank(MA)  d + 1 then for some n &#x3E; 0, there is a sporadic cycle
on A". Our objective is to show n = 1 is not sufficient.
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We need no longer concern ourselves with the theory of abelian varieties.
Instead we can concentrate on the calculation of zero divisors in group rings.
For instance, Lenstra’s result is a direct consequence of the following fact.

LEMMA 3. If G is abelian, every submodule N of Q [G] - has a nonzero element fi
whose coefficients are 0, + 1.

Proof. Since G is abelian

where e. = 03A3g~G X(g)g. Because N is defined over Q,

Let H be the kernel of x. Let 6 generate the cyclic group G/H and assume 6m = c,
a2m = 1. Then X generates the character group of G/H and X and Xt are

conjugate ~ (t, 2m) = 1. Let

Then if an odd x’ is not conjugate to x then either ~’(03B2) = 0 or 7’(H) = 0. In either
case ~’(03B2H) = 0 which implies that if we let 03B2 = 03B2H,

Furthermore, 03B2 has the appropriate coefficients since the order of a typical
product 03C32n/p1 Ha2n/pt is exactly p ...pt, different for each product. This proves
the lemma. D

THEOREM 3 (Lenstra). Let (K, S) be any simple CM-type, where K is a field with
abelian Galois group. If A is any abelian variety of CM type (K, S) then

rank(M) = dim(A) + 1 f and only if the ring of Hodge cycles on A is generated by
classes of images of divisors.

Proof. We need check only the case when rank(M)  dim(A) + 1. By Lemma 2
this is equivalent to S - cS not generating Q[G]-. If N is the nontrivial
submodule generated by the right annihilators of S - cS then by Lemma 3, there
exists an element in N whose coefficients are 0, + 1. This can be rewritten in the
form 0394-1-c0394-1 which gives us a "line" A containing a sporadic cycle on A.

0
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5. A group ring statement of our result

When G is not abelian, Q [G] - may have submodules which do not contain an
element with coefficients 0, + 1. Our counterexample requires that there exist a
group G and a CM-type S such that S - cS does not generate Q [G] - and such
that no nonzero right annihilator of S - cS has coefficients 0, + 1. We simplify
matters by assuming G is of the form Z/22 x Go where the Z/22 component
corresponds to complex conjugation, i.e. Z/2Z = {1,c}. Note 0 [G]- ~ Q [GO]
and our previous group ring conditions for a sporadic A are actually statements
about the group ring Q [Go]. We summarize the equivalence between the Hodge
ring statements and the group ring statements in the following proposition.

PROPOSITION 1. Let K be a Galois complex multiplication field with Galois
group G = Z/22 x Go where Go is the Galois group of the totally real subfield.
Write every element of G as cia where i = 0, 1 and u E Go. Define a map from subsets
U ~ G to Q[Go] by

The map (D gives a bijection between CM-types S and elements a = 03A3g~Go agg,
ag ~ { ±1}. Let a be the image of any simple CM-type S. Then the following three
conditions are equivalent.

1. The divisor classes do not generate the Hodge ring of any abelian variety of
CM-type (K, S).

2. There exists a sporadic A.
3. There exists (nonzero) fi E 01 [GoJ whose coefficients are + 1 or 0 such that

oc - fi == 0.

In particular let Go = Z/2Z x Z/5Z x D5 where D5 is the dihedral group of
order 10. We will prove

THEOREM 4. There exists a CM-type S such that Q[Go]03B1 ~ Q[Go] and such
that no (nonzero) fi whose coefficients are + 1 or 0 will satisfy 03B1·03B2 = 0.

Since Theorem 4 involves only statements about S and the group ring a [GoJ,
we will prove the theorem without any references to the field K. Later we will

construct a complex multiplication field with Galois group

(the first component being complex conjugation). Obviously if such a field exists
then Theorem 4 implies Theorem 1.
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6. The general approach

Let Go be a non-abelian group. By the general theory of simple rings

For each i, g is a division ring or a matrix algebra over a division ring. Let
03B1~Q[Go], then

If 03B1· fi = 0 then 03B2 = 03A303B2i and 03B1i · 03B2i = 0 for each i. If Pi ~ 0 this means ai is either
zero or a matrix of less than full rank. Thus if we choose our 03B1i so that ai is of full

rank except for restricted subset of i, we can restrict the possibilities for the right
Q [Go]-module N of right annihilators of a. For example, with little difficulty we
can guarantee that the right annihilators have no elements whose coefficients are
all 0 or + 1. The problem is that a is not necessarily of the right form. To fix this
we use the following general technique.
Remove the denominators in ag from a = E agg. Multiply the result by two

and add or subtract the trace element tG = 03A3g~Go g to guarantee that all the
coefficients are odd. If done correctly, this should not change the right
annihilators of a. Let p be a prime. Create a larger group Z/pZ x Go. Then
assuming 7L/p7L = 03C4| 1 -cP = 1,

where 03C4+=1+03C4+···+03C4p-1 and 03C4-= p-03C4+. We can create a new a’ out of the
old a as follows. Choose Yi e Q [Go], i = 0,..., p -1, which satisfy the following
two conditions.

1. a = 03A303B3i,
2. the coefficients of each Yi consist of entirely + l’s or - l’s.

If p is large enough, there will be ample choices for yi . Let a’ = £f1) 03B3i03C4i. The
projection of a’ into 03C4+Q[Go] is equal to a and if we are lucky the projection of
a’ into 03C4-Q[03C4][G0] will generate all of that ring. The odds are in our favour
since "most" elements in any simple ring generate the ring. If that is the case then
a’ will have exactly the same zero divisors as a but will now be of the right form.
This gives us our counterexample. This is not exactly the approach we follow
but it is good to keep it in mind.
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7. The décomposition of the group ring

Unfortunately the next three sections are somewhat technical. In order to
construct a counterexample we must decompose Q [Go] explicitly and verify by
direct computation that "a" (see Propositions 2, 3 and 4 and Section 9) satisfies
the properties wanted. Since Go is the semi-direct (and direct) product of cyclic
subgroups, the decomposition is induced from the decompositions and (tensor)
products of the cyclic factors. Over Q some complexity is introduced by the
repeated Z/5Z factors (one inside D s). The algebra Q[Z/57] is isomorphic to
Q (D 0 [oi] (03C9 is the fifth root of unity) but Q [cv] is the splitting field for any
further U [Z/5Z] factors.
We assume Go = Z/2Z H with H=Z/5Z D5. Let a generate the 7L/27L

component. Immediately,

so we are reduced to studying the decomposition of 0 [H].

Decomposing Q[F5] we have

where 03C4+ = 03A34i=0 03C4i/5 and 03C4_= 1-03C4+ are the orthogonal idempotents. Note,
03C4+Q[03C4]~Q and if we map r onto cv (a primitive 5th root of unity)
T - Q [T] -- Q [03C9]. Define x + = 03C4+x and x - = 03C4_x for each x e Q [H] and extend
this notation to subsets of Q [H] (for example, 0 ’ = T + 01 and 0 - = T - Q). Then
using (2) we have as a direct sum of rings,

Our intention is to decompose each factor into its simple ring components.
For convenience we collect the symbols needed.
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Let V be spanned by the Q-basis

Then the first summand decomposes as

The summands p + yo01 and p - yo01 are one dimensional and V is a matrix

algebra over Q[03B3+03B3-1] ~[5]. For instance, V will decompose (non-
uniquely) into a direct sum of the two irreducible left Q [H]-modules Vp + and
V03C1-.
Tensoring (4) with Q-[03C4],

As before 03C1+03B3oQ-[03C4] and 03C1-03B3o"Q-[03C4] are one dimensional irreducible factors
over Q-[03C4] ~ Q [o)]. However, V is now the direct sum of two matrix algebras
F1 and F2 over Q- [r]. The algebras F1 and F2 decompose further as left Q [H]-
modules but the decomposition is not unique. Set K=Q-[03C4]. One such
decomposition is

where

It is this decomposition which allows us to create our counterexample.
Even though the decomposition as Q [H]-modules is not unique, the ring

Q [H] factors into unique simple ring components. It is worthwhile to give this
decomposition.

PROPOSITION 2
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is the unique decomposition of Q [H] as simple rings.
Proof. This follows from (4) and (5). D

8. The création of â

We construct an element â E 01 [H] whose coefficients are all + 1 and whose

right annihilators are sums of elements from 03C4+03C1_V and F1. In the next section,
we enlarge the group to Go and eliminate the contribution coming from 03C4+p- h
The remaining (nonzero) right annihilators in F 1 will have at least one

coefficient not equal to 0, l 1. The â derived here was obtained by trial and
error. Since the process was somewhat laborious we give only the final result.
To start we represent every element of Fi (i = 1, 2) as a 2 x 2 matrix over K and

find the zero divisors. Let e 1= yi , e2 = PYL be a basis of Ei. Since Yi e1 = 5e1 and
03B3i-e2=03C103B3-i03B3i=0, the element yî corresponds to the matrix

Likewise 03C103B3i-, y i;, py - correspond to the matrices

respectively. This gives an isomorphism between M2(K) and Fi.
We are more interested in F, so set i = 1. Elements in M2(K) with right

annihilators (the extra factor of 5 is for clarity of notation only) are the matrices

They correspond to x(a, b, 0, () in F1 where

The right annihilators of A(a, b, 0, () in M2(K) are
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which correspond to y(a, b, ~’, (’) in FI where

Thus we have shown

LEMMA 4. If x · y = 0 in FI then x = x(a, b, ~, 03BE) and y = y(a, b, 4J’, 03BE’) for some
a, b, ~ 03BE, ~’ 03BE’ ~ K.

For the correct choice of a and b, the right annihilators have at least one
coefficient not equal to zero or + 1. We start with a technical lemma.

LEMMA 5. Let r, s be nonzero numbers such that r ~ l s, r :0 ± 2s, s ~ + 2r then

{03B41r+03B42s}03B41,03B42~{0, ±1}} has nine distinct elements.
Proof. Easy computation. Fi

PROPOSITION 3. Assume r and s are as in the lemma. If we set

y( - s, r, 0, 03BE) = 03A3g~H 03C1gg and assume y( - s, r, ~, 03BE) ~ 0 then there exists g such that
03C1g~{0, ± 1}.

Proof. Assume y( - s, r, ~, o has coefficients in {0, ± 1}. By (7)

But ~~Q-M = K so ~03B31- = ~03B31, likewise for the other terms so

Let

where by assumption Cjk, djk E {0, ±1}. Take r times (8) and subtract s times (9),

Using

an algebraic computation shows that rcjk-sdjk=rclo-sdl0 where l ~
j - k mod 5. By Lemma 5, cjk = C10, djk = dlo. Multiplying (8) by s and subtracting
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(9) times r and using the same reasoning we can show cjk = cmo, djk = dmo where
m E F5, m m j + k mod 5. So j, k cio = cmo and dlo = dmo. It follows that Coo = cjo
and d00 = dj0 j = 1,...,4. But 03A34j=0 cj003C4j~Q-[03C4] so 03A34j=0cj0=0 and so

cj0 = 0j. Likewise dj0 = 0j. Thus (8) and (9) imply r~·1+03BE·1 and

s~·1 + r03BE· 1 are zero and therefore 0 and ( are zero. Contradiction. 0

Having done the ground work, we begin the creation of â. Note for future
reference that

We start with

in F1. It is a left zero divisor in FI whose right annihilators in Fi 1 are the set

{y(a, b, 0, Q |~,03BE~ K}. The objective is to add in elements from the other factors
of Q[H] so that the sum has + 1 as coefficients. If done correctly the

contributions from most of the other factors will be invertible. In the following
we pick and choose our elements and compute partial sums, much like putting
together a puzzle made out of oddly shaped building blocks. The hope is that the
last piece will fit in correctly. The initial few choices will be designed to keep the
relative ratios (the ratio of one coefficient to another) in the set {0, + 1, + 2, ~}.
The first elements are from 03C1 + 03B3-0 K and F2. Define

If we assume a = 5x + n and b=5y+n then

Set n =1, x = 1, y = -1. Then a = 6, b = - 4. Define
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Now we assemble the rest of à. No group elements must be left out (see 03A91),
the bar in yi must be removed (see n2), and every coefficient must be made + 1
(see (3).

Let

Then

If we set â = à + 01 + 03A92 + S23 then the coefficients of â are indeed all 
± 

1 so â is
the image by O of a complex multiplication type (see Proposition 1).
Now,

But SY2 - sPY - 2 + 6 503B3-2 - 4 503C103B3-2 corresponds to the matrix [6 -4 -4 6] which is
invertible in F2. Therefore,

PROPOSITION 4. The element â decomposes into the sum of the following
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component elements, listed in the order of Proposition 2.

The only component elements that are not invertible are x(6, -4, 1, 1)/5 and
-403C1+03C4+(1-03B30/5).

Proof. Clearly all the components are nonzero. The only subalgebras not
isomorphic to fields or division algebras are 03C4+ V, F1, and F2. We have verified
â|F2 is invertible and â|F1 is not invertible by construction. If

-403C1+03C4+(1-03B30/5)~03C4+V were invertible then we would not need the next

section. Unfortunately this element is annihilated by 03C1-03C4+V. D

So by Propositions 2, 3 and 4 and Lemma 4, the right annihilators of â
generate the right 01 [H]-module

9. Eliminating the factor (1-03C1)03C4+V

Set

Unlike â, almost any reasonable try seems to produce a good a. Simple
computation shows that the a given above, like fx, has all coefficients + 1 and is
therefore the image of a CM-type. Furthermore the projections of a to

(1±03C3)(Q[H] are the elements
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A little more computation using (11) and Propositions 2 and 4 shows that a
generates every simple ring subfactor of (1 + a)Q [H] and ( 1- 03C3)Q [H] except for
(1 + 03C3)F1 and possibly (1 ± 03C3)03C4+V. Clearly our first goal is to show that a does
indeed generate the factors (l±(7)ï+K

Case 1: The component of a in (1 +(7)ï+K This is

Define an automorphism ( - ) analogous to complex conjugation by extending
the maps 03B3 = 03B3-1 and 1 = 1 to all of Q [y]. This gives us the obvious definition of
an "absolute value", Izl2 = z · z for z E 01 [y]. Note that 1- yo /5 has absolute value
1-yo/5 and is the identity in the field (1-03B30/5)Q[03B3](~ Q [03C9]).

LEMMA 6. An element (a + bp) a, b~(1 - yo/5)Q[yJ is a zero divisor if and only if

Proof. (a + b03C1) · (c + d p) = 0 implies that ac + bd and ad + bc must be zero
(remember zp = pz). The result follows from some simple algebra. 0

Applying Lemma 6, a generates (1 + o7)-c + V if

does not have "absolute value" (1 - y0/5). This is a simple numerical com-
putation which we leave to the reader.

Case 2: The component of a in (1 - 03C3)03C4+V. This is similar to Case 1 and

omitted here. Therefore a generates every irreducible component of Q[G0]
except for (l±(7)Fi.
The projections of a into (1 + a)Fi 1 generate the left Q[Go] submodules

Thus the right annihilators of a are of the form
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or equivalently of the form

By Proposition 3, these elements will never have coefficients consisting entirely
of + 1, 0. This proves Theorem 4.

10. The création of the corresponding CM field

We still need to show that there is a Galois totally complex field whose Galois
group is Z/2 x Z/22 x Z/52 x D5 with the first Z/2Z component being complex
conjugation. If a totally real field whose Galois group is Z/22 x Z/52 x D s exists
then adding in any imaginary quadratic extension over Q will give us the totally
complex field. However, this reduces to showing the existence of a totally real D5
since it is easy to create real quadratic and quintic extensions disjoint from the
Ds extension. Gene Smith, UC Berkeley, in his thesis ([5]) computes the general
polynomial parametrizing all such D5 extensions. One simple example of such a
D5 extension is the splitting field for

Its real roots are approximately - 0.02730, 1.41005, - 2.57914, - 3.55684, and
14.78866 and the real quadratic subfield is Q [5].
Once we have the field, we use the a we created in the previous section to

construct a CM-type S. Then as in Section 2.1 we create the map 03A8 from K to
100 by taking the direct sum over all the embeddings in S. Taking the quotient
of C100 by the image of any lattice in K will give us an abelian variety which has
no sporadic cycles but whose Mumford-Tate group has order 85  101.
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