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The purpose of this paper is to prove the following:

THEOREM. Let S’ be an affine, irreducible, simply connected surface with

exactly one singular point q and assume the analytic type of q is that of the origin in
A2/Za, a &#x3E; 1. Suppose also that k(S’) = -~, Pic(S’ - q) ~ 7La, and k(S’ - q)  2.

Then S’is isomorphic to A2/Za.
The main application of the theorem is to the linearization problem. Suppose

that C* acts on three dimensional affine space A3 with exactly one fixed point p.
If the weights of the action at p are all positive or all negative then the action is
linearizable, [2]. If the weights are - a, b, c with a, b, c &#x3E; 0, where a, b, c are

pairwise relatively prime then, as is proved in [6], the action is linearizable

provided the quotient space A3/C* is isomorphic to A 2/7La. It is easy to prove
that S’ = A3/C* satisfies all the assumptions of the theorem except perhaps
k(S’ - q)  2. So far we are not able to prove that this assumption is satisfied in
general, we can only prove it for a wide class of actions, so-called "good" actions
(see [6]).

In the proof of the theorem we consider three cases according to the value of
k(S’ - q).

Similar results appear to have been obtained recently by R. V. Gurjar and M.
Miyanishi.

Section 1

In this section we recall some facts about P1-rulings. All facts below can be
found in [3].

Let S be a smooth surface. Let S be a smooth compactification of S with
D = S - S being a divisor with normal crossings as the only singularities. (Such
a divisor we call a NC-divisor.) By i(S, D; Z) and i(S, D; Z) we denote
coker(Hi(D) ~ Hi(S)) and ker(Hi-1(D) ~ Hi-1(S)) respectively. By Lefschetz

duality Hj(S, D; 7L) ~ H4 - j(S; 7L). Therefore i(S, D; 7L) and i(S, D; 7L) corre-
spond to a subgroup and a quotient group of H4 - i(S; Z) respectively.

Compositio Mathematica 87: 241-267, 1993.
c D 1993 Kluwer Academic Publishers. Printed in the Netherlands.
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DEFINITION. The subgroup (resp. quotient group) of Hi(S; Z) corresponding
to 4-i(S, D; Z) (resp. 4-i(S, D; Z)) will be denoted by i(S; Z) (resp. i(S; Z)).
Their ranks will be denoted by i(S) (resp. i(S)).
From the exact sequence

we obtain bi(S) = bi(S) + bi(S).
Let f : S - C be a P1-ruling. C is a smooth curve. An irreducible component Y

of a fibre F is called a D-component if Y c D, otherwise it is called a S-

component. The number of S-components of F we denote by 6(F). Of course
6(F) = 1 for general F. The S-multipliciy of F is defined to be the greatest
common divisor of the multiplicities of the S-components of F and is denoted by
p(F). When 6(F) = 0 we put 03BC(F) = oo . A component Y of D is called horizontal
if f(Y) = C. A fibre F is said to be D-minimal if F n D does not contain an
exceptional curve. Let h be the number of horizontal components of D. Let
E = 03A303C3(F) &#x3E; 1 (u(F) - 1). Let v be the number of fibres with a = 0. Then

Let F1,..., Fk be all fibres with y &#x3E; 1. Then

1.2. 03C01(S) = 0 only if

Now consider A1*-rulings.
Let f : S - C be a P1-ruling. f is called a A1*-ruling of S iff DF = 2, where F is

a fibre of f. If there are two distinct horizontal components of D the ruling is
called a sandwich. If there is only one horizontal component the ruling is called
a gyoza (we follow the terminology of Fujita). A connected component of F n D
is called a rivet if it meets horizontal components of D at more than one point or
if it is a node of Hl U H2, the union of horizontal components of D. Let p be the
number of rivets contained in fibres of f. Let e(t) be the function defined as
follows:

1.3. Suppose that f is a gyoza. Then
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where H is the horizontal component and g stands for the genus of a curve.

1.4. Suppose f is a sandwich. Then

or

or

Let y(F) be the number of connected components of F n D which do not meet
the horizontal components of D. Let r be the sum of the y(F) for all the fibres F
of f. Then b3(S) = r if f is a gyoza, b3(S) = r + 1 - e(p) if f is a sandwich.

Section 2

Let things be as in the statement of the Theorem.

2.1. Since Pic(S’ - q) ~ Za we may apply "the covering trick" (see [1], (§17)) and
infer that there exists a X’ and an unramified covering 03C0’: X’ ~ S’ - q of degree
a. It follows from the construction of X’ that 7La acts transitively on fibres of n’.
Let B’ be an open neighbourhood of q of the form B/Za where B is a ball around
0 in A2. We will show that 03C0’-1(B’ - q) is isomorphic to B - 0.

Since B - 0 is simply connected there exists a continous mapping 9 such that
the following diagram is commutative

where p is the quotient mapping B - 0 ~ B’ - q = B - 0/7La. It is enough to
show that ç is injective. Let G be the image of 03C01(B’ - q) xé 7La in 03C01(S’ - q). It is
proved in lemma 2.6 that 03C01(S’ - q) is normally generated by G. Since S’ - q
admits a Galois covering of degree a it follows easily that H1(S’ - q, Z) = 7La and
that G n H = {1} where H denotes the commutator subgroup of ni(S’ - q). It
follows also that the mapping 03C01(B’ 2013 q) ~ 03C01(S’ - q) is injective. Suppose
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~(x) = (p(y) = z for x, y ~ B - 0. 03C01(S’ - q) acts in the standard way on X’. Let
K c 03C01(S’ - q) be the stabilizer of z. Then 03C01(S’ - q)/K is isomorphic to the

automorphism group of the covering 03C0 which is isomorphic to 7La. Hence
K = H. Take a path 1 joining x and y. Then p(l) is a loop in B’ - q. Let a E G be
the corresponding element. a lifts to a loop ~(l) passing through z. This implies
that the automorphism of the covering rc corresponding to a fixes z, hence that
a E K n H. But K n H = {1}, hence a = 1 in G. Then p(l ) = 1 in 03C01(B’ - q). But
then then l is a loop, hence x = y.

Set X = X’ u {0} and define 03C0: X ~ S’ by 03C0(x) = 03C0’(x) for x ~ 0 and 03C0(0) = q.
X is a smooth analytic surface. We’ll show that X has a structure of an affine

algebraic surface.
For an algebraic variety Y let C[Y] denote the algebra of regular functions on

Y. S’ is normal, hence S’ - q  S’ induces isomorphism C[S’] ~ C[S’ - q].
Hence C[S’ - q] is a finitely generated C-algebra. Let Z be an affine normal
variety such that C[Z] ~ C[X’]. Consider the diagram

where 03C8 is induced by C[Z]  C[X’] and r is induced by
C[S’] ~ C[S’ - q]  C[X’] = C[Z]. g/: X’- r-’(S’ - q) is an isomorphisme t/J
extends to an analytic mapping from X to Z since X is smooth at 0. Also

03C8-1: r - ’(S’ - q) ~ X’ extends to an analytic mapping from Z to X since Z is
normal. Hence Z is analytically isomorphic to X.
Our goal is to show that X éé A2.
Let S be a minimal desingularization of S’. It is well known that the

exceptional divisor E in S is a rational linear chain, i.e. E = E1 + ··· + Er where
Ei ~ P1, i = 1,..., r, and EiEi+11 = 1, 1  1  r - 1, E i E j = 0 if |i - j|  2.

2.2. LEMMA. Pic(S) ~ Zr and is generated by C, E1,...,Er-1 1 where C is an
arbitrary curve such that CE, = 1, CEi = 0, 1  j  r.

Proof. We keep the notations of 2.1. Let x, y be local parameters at 0 on X
which are semi-invariant with respect to the 7La-action on X. Let Lx (resp. Ly) be
the proper transform on S of the curve 03C0(x = 0) (resp. 03C0(y = 0)). It is well known
that Lx (resp. Ly ) meets a terminal component of E, say E1 (resp. Er),
transversally and does not meet any other component of E. Moreover it is easy
to show that the divisors 03C0(x = 0) and 03C0(y = 0) are of order a in

Pic(S’ - q) = Pic(S - E). The divisor of x" on S is of the form

(x’) = 03A3r-1i=1 aiEi + Er + aLx . Since Lx is a generator of Pic(S - E) we infer that
Pic(S) is generated by Lx, E 1, ... , Er-1. It is easy to see that there are no relations
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between these generators. Let C be a curve such that CE 1 = 1, CEi = 0 for i &#x3E; 1.

Then C ~ bLx + 03A3r-1i=1 biEi for some integers b, b1,...,br-1. We obtain

br-l = CEr = 0, br-2 CE, = 0 and so on. Hence C = bL., in Pic(S). Then
1 = CE 1 = b(LxE1) = b and C = Lx in Pic(S).
By symmetry we obtain that Pic(S) is freely generated by C’, E2, ... , Er where

C’E, = 1, C’Ei = 0 for 1  i  r - 1.

2.3. LEMMA. S is simply connected.
Proof. Apply Van Kampen’s theorem to the union (S’ - q) ~ B’ = S’ where

B’ = B/7La and B is a small ball around 0 in A2. B’ gives rise to a neighbourhood
B" of E in S. 03C01(B’) ~ 03C01(B") = 0. Now apply Van Kampen’s theorem to
(S - E) ~ B" = S. Since S - E = S’ - q and (S-E)nB" =(S’ -q)nB’ we
obtain 03C01(S) = 03C01(S’) = 0.

Let S be a smooth compactification of S with D = S - S being a NC-divisor. S
is simply connected since S is. k(S) = -~ implies k(S) = -~. Therefore S is
ruled. The base curve of any ruling must be simply connected, hence is

isomorphic to P1. Thus

2.4. S (and S) is rational.

2.5. LEMMA. Invertible regular functions on S are constant.
Proof. Let A(S)* denote the group of units on S. There exists exact sequence

0 - A(S)*/C* ~ H1(S; 7L) ([3], Prop. 1.18). S is simply connected, hence

A(S)* = C*.

2.6. LEMMA. 03C01(S’- q) = 03C01(S - E) is normally generated by 7La.
Proof. Apply Van Kampen’s theorem to the union (S’ - q) ~ B’ = S’ where

B’ = B/7La and B is a small ball around OEA2. 03C01(B’ - q) = ?La, 03C01(S’) = 0. The
lemma follows.

2.7. COROLLARY. b1(S - E) = 0.

2.8. COROLLARY If nl(S’ - q) is abelian then it is isomorphic to ?La.
Proof. By lemma 2.6, 03C01(S’ - q) is a quotient group of Za. On the other hand

S’ - q admits the covering X’ - 0 ~ S’ - q of degree a, hence contains a

subgroup of index a.

2.9. LEMMA. b1(S) = 0, b2(S) = r, b2(S) = r, b2(S) = 0, b3(S) = 0.
Proof. bl(S) = 0 follows from 03C01(S) = 0. Let S be a NC-compactification of S

as above. H2(S; Z) ~ Pic(S) since S is rational. Hence H2(S; Q) ~ Pic(S) Q Q.
Pic(S) is freely generated by the irreducible components of D and free generators
of Pic(S), by 2.2 and 2.5. Hence H2(S; Q) is freely generated by the components of
D and E1,..., Er. Consider the exact sequence of homology groups with rational
coefficients
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Since

and

rank

we get

The latter implies that D is a rational tree, hence H 1 (D; Z) = 0. From the
sequences

where 2,(D) is the free abelian group generated by the irreducible components
of D, using the natural isomorphisms

we obtain H2(S; Z) ~ Pic(S). Hence b2(S) = r. 2(S) = r follows easily. b3(S) = 0
follows from the fact that D is connected as a boundary divisor of the affine
surface S’.

2.10. It follows from 2.9. and Lefschetz duality that b2(S’-q)=0, b3(S’-q)=1,
b4(S’-q)=0. Thus x(S’ - q)=0 and x(X - 0) = 0. Therefore X(X) = 1. In part-
icular, bl(X) = b2(X).

Section 3

In this section we will prove the Theorem in case k(S’ - q) = - 00.
Let S be a NC-compactification of S. Let D = S - S. Assume that S’ - q is

not A l-ruled, i.e. that S’ - q doesn’t contain a cylinder C x Al 1 where C is a
curve. Then, by [7], there exists p: S ~ Y such that:

(i) Y is a smooth surface and p is birational.
(ii) Let B = p*(D ~ E). Then Y - B contains an open subset U which is A1*-

ruled over P1. More precisely, there exists a surjective map g : U - P1
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such that each fibre of g is irreducible and isomorphic to A1* and there are
exactly three multiple fibres gl, g2, 93 and the sequence of multiplicities is
one of the following: (2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5). Such a fibration is
called a Platonic fibration.

It is known [7] that the fundamental group of a Platonic fibration is finite and
its universal covering is isomorphic to A2 - 0.

Let things be as above. Then p: p-1(U) ~ U is an isomorphism since it is a
birational map and S’ - q does not contain a compact curve. Thus we may find
an open V c S’ - q which has a structure of Platonic fibration. There exists a
proper unramified map a : A2 - 0 ~ V. Assume that dim(S’ - q) - V  1. Then,
since Pic(S’ - q) is a torsion group, there exists a nontrivial invertible function
on E Such a function would induce a nontrivial invertible function on A 2 - 0.
Therefore dim(S’ - q) - V = 0 or S’ - q = V. The covering map

03B1: A2 - 0 ~ V ~ S’ - q extends to a finite map oc A2 - a(A 2) c S’. The image
of a is affine since it is isomorphic to A2/03C01(V). It follows easily that 03B1(A2) = S’
and a(o) = q. Consider the following diagram

(A2 - 0) S’-q(X - 0) must split into components, each of them isomorphic to
A2 - 0. We get a finite map A2 - 0 ~ X - 0 which extends to a

map fi: A2 ~ X. Pis unramified over X - 0 and totally ramified over 0. Since X
is smooth it follows that deg(03B2) = 1. Therefore X ~ A2 and S’ ~ A2/7La, which
implies that S’ - q is A’-ruled.
We have proved that if k(S’ - q) = - oc then S’ - q is A’-ruled.
Let f:S ~ P1 be a A l-ruling of S which extends a A l-ruling of

S’ - q = S - E. Then E is contained in a fibre FE. By (1.1) we have

X = r - 1 + v. The fibre FE must contain at least one S-component different
from the Ei. Hence 03C3(FE)  r + 1 and 03A3  r. By (1.2), v  1. Thus 6(FE ) = r + 1,
E = r and v = 1. Hence f has one fibre Fo with a(Fo) = 0 and the fibre FE
contains E and one more component C. By (1.2) we infer that Fo is the unique
multiple fibre. Hence S - FE contains A1* x Al. Hence 03C01(S’ - q) is abelian and
03C01(S’ - q) ~ 7La and 03C01(X) = 0. Since b1(X) = b2(X) = 0, Pic(X) = 0 and in-
vertible functions on X are constant ([3], Prop. 2.5). X contains a covering of
A1*  A1, which is isomorphic to A1* x A1. One then sees that the complement of
Ai x Al in X consists of one curve L. If h = 0 is an equation of L, then h:- A’ 1

gives a structure of A1-fibration. Hence X ~ A2.
One can also argue as follows: k(X) = k(X - 0) = k(S - E) = - oo,
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Pic(X) = 0 and there are no nonconstant invertible functions on X. By [8],
X --A 2

Section 4

In this section we recall some facts concerning NC-divisors on smooth compact
surfaces. We follow the terminology of Fujita [3], see also Tsunoda [10].

Let D be a reduced NC-divisor on a smooth surface M. Assume that each

component of D is isomorphic to P1. Let Y be an irreducible component of D.
We put 03B2D(Y) = Y(D - Y) and we will call this number the branching number
of Y Y is called a tip of D if 03B2D(Y) = 1. A sequence C1,...,Cr of irreducible
components of D is called a twig of D if f3n(Cl) = 1, 03B2D(Cj) = 2 for 2  j  r. CI
is called the tip of this twig, T say. Since 03B2D(Cr) = 2 there exists a component C
of D, not in T, such that Cr C = 1. If C is a tip of D then T’ - T + C is a
connected component of D and will be called a club of D. A component Y such
that 03B2D(Y) = 0 also will be called a club of D. A component D1 such that

03B2D(D1)  3 will be called a branching component of D. Let T = CI + ··· + c, be
a maximal twig of D. T is called a contractible twig if the intersection matrix

[CiCj] is negative definite. In this case let Bk(T) = 03A3ri= 1 ai Ci be the Q-divisor
such that Bk(T)C1 = -1, Bk(T)Cj = 0 for j a 2. Bk(T) is called the bark of T.
For a contractible club T of D, T = C1 + ··· + Cr + C, its bark is defined by
Bk(T)C1 = Bk(T)C = -1, Bk(T)Cj = 0 for 2  j  r. For an isolated Y its bark
is defined to be (-2/Y2)Y. In all cases we have Bk(T)C = (K + D)C for any
component C of T.

Let T = Cl + ... + Cr be a twig such that C2i  -2 for 1  i  r. Such a twig
will be called an admissible twig. We define d(T) = det[-CiCj]1i,jr. Let
T = C2 + ... + Cr. We define e(T) = d(T)/d(T). Then d(T) and d(T) are re-
latively prime integers and d(T)  d(T).

4.1. PROPOSITION ([3], Cor. 3.8). T ~ e(T) defines a 1-1 correspondence
between all the admissible twigs and all rational numbers in the interval (0, 1).

Let T = Cl +... + C, be an admissible twig of D. Let Bk(T) = X niCi. Then
ni = e(T), nr = d(T)-1, (Bk(T))2 = -n1 = -e(T), 0  ni  1 for 1  i  r. If T
is an admissible club of D then 0  ni  1 except in the case in which C2 - - 2
for every i. (Then Bk(T) = T). Also ni = e(T) + d(T)-1. By definition of Bk(T)
we have (Bk(T)2 = - n1 - nr.

Section 5

Let things be as in the Theorem.

5.1. PROPOSITION. If k(S’ - q) a 0, then S’ - q does not contain an open U
which is A1*-ruled.
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Proof. Assume that there exists U open in S’ - q and a map f: U --+ ¡pl for
which a general fibre is isomorphic to A1*. f induces a rational map f : X ~ P1.
Suppose that  is not defined at some x ~ X. Let 03B2: X - X be a modification of
X such that   03B2 is defined everywhere on X. A general fibre of 10 f3 contains
A1. Hence k() = k(X) = - oo, which implies k(S’ - q) = - 00.
So 1 is defined on X, hence f is defined on S and E is contained in a fibre of f.

f extends to a P1-ruling of S, some suitable compactification of S.
We consider two cases:

Case I. f: S ~ P1 is a gyoza.
In this case, by (1.3), v = e(v), r = 03A3 + 1 - E(v), 0 = p. Let FE be a fibre

containing E. Then 03C3(FE)  r + 1. Hence 03A3  r and 03B5(03BD)  1. Therefore

8(v) = v = 1 and Y- = r. There is one fibre Fo with a(Fo) = 0 and 6(FE) = r + 1.
Let H be the horizontal component of f.

5.2. LEMMA. Let C be the S-component of FE not contained in E. Then C meets
a terminal component of E.

Proof. Assume that CE, = 1, 1  i  r. Suppose that L is an exceptional
curve in FE n D. If 03B2D(L)  2 we may contract L. Therefore we may assume that
03B2D(L)  3. Since 03B2FE(L)  2, H meets L. Thus HL = 1, otherwise H meets L in
two distinct points (D is a NC-divisor) and there would be a loop in D. The
multiplicity of L is equal to 2, otherwise f3 F E(L) = 1 and f3 D(L) = 2. L meets two
D-components D1, D2 of FE. D1, D2 have multiplicity 1. Also C does not meet H.
L is the unique exceptional curve in FE n D.

Let p: S ~ p(S) be the blowing down of L. Then p(H)p(D1) = p(H)p(D2) = 1.
Both p(Dl) and p(D2) have multiplicity 1 with respect to the induced ruling.
Assume that p(D 1 ) is exceptional. Let q:S ~ q(S) be the composition of the
contractions of first L and then p(D1). q(H) has contact of order 2 with q(D2). It is
known that by successive blowings down we may contract the fibre to a P1.
q(D2) cannot be contracted during this process. Also the curve Ei cannot be
contracted since at each stage it meets three other components of the fibre.
Therefore p(Di), i = 1, 2, is not exceptional. Hence p(C) is the unique exceptional
curve in p(FE). p(C) meets exactly one component Do of p(D) n p(FE). Let
D0 + ··· + Ds be the maximal linear chain in p(D) n p(FE) such that

f3P(FE)(DJ = 2 for i = 0,..., s - 1. We shrink successively p(C), Do,..., Ds-1. If

03B2p(FE)(Ds)  3 then there is no possibility of shrinking DS and Ei. Hence

p(D) n p(FE), is a linear chain. After shrinking p(C) and then p(D) n p(FE), the
image of H has contact of order 2 with the image of Ei, which therefore has
multiplicity 1. But this is impossible since it is exceptional and meets two other
components of the fibre.
Thus we may assume that there is no exceptional curve in D n FE, i.e. C is the

unique such curve in the fibre. As above we show that D n FE is a linear chain
and that the multiplicity of Ei is  2. The chain is obtained by successive
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blowings up performed over Ei. Hence the multiplicity of every component of
D n FE is at least 2. Therefore H meets one of these components transversally.
This must be the terminal component. Otherwise, after contraction of D n FE,
the image of H would have contact of order 2 with Ei, which implies
mult(Ei) = 1.

It is clear that H meets Fo at one point, otherwise there would be a loop in D.
Consider f: H - P’. From the Hurwitz formula we infer that f has exactly

two ramification points. It follows that H meets every fibre different from FE, Fo
in two distinct points.
Suppose that FI is a singular fibre different from FE, Fo. F, contains exactly

one S-component G and the multiplicity of G is 1. Indeed, the surface

 = S ~ (H - D) is simply connected, and thus by (1.2) every fibre has -
multiplicity equal to 1. G cannot be the only exceptional curve in F 1. Let L be an
exceptional curve in F1 ~ D. We may assume that H meets L. H meets L
transversally at one point since D is a NC-divisor and there are no loops in D.
The multiplicity of L is 2 otherwise we could shrink L. Therefore HL = 1 and H
meets Fi at one point; contradiction.

Therefore the only singular fibres are F 0’ FE. Thus H is contained in

some rational maximal twig of D. Hence by ([3], (6.13)) H is contained in the
negative part (K + D + E) - of the Zarisski decomposition of the divisor

K + D + E. Hence F(K + D + E) - &#x3E; 0, where F is the general fibre. But

F(K + D + E)+  0 and F(K + D + E) = 0; contradiction. The lemma is

proved.
We go back to the proof of 5.1. in case I. By lemma 5.2. C meets a terminal

component of E, say E1. Then, by (2.2), C, E 1, ... , E,- 1 form a basis of Pic(S). Let
L be a section of the ruling f. Then, in Pic(S), L = xH + (combination of prime
divisors contained in fibres of f). Taking intersection index of both sides with a
fibre F we get 1 = 2x; contradiction.
Now we consider

Case II. f : 9 --+ P’ is a sandwich.
By (1.4.) there are two possibilities.
IIa. 03BD = 1, X = r + 1,

IIb. 03BD = 0, 03A3 = r, 03B4 = 1.

Let H1, H2 be the horizontal components of D.
We contract all exceptional D-components in singular fibres and assume that

f is D-minimal. Assume IIa. There exists a fibre Fo such that u(F 0) = 0; E is
contained in a fibre FE. Suppose that FE contains only one S-component C not
contained in E. Then C is the unique exceptional curve in FE. This implies that
FE n D is connected. Neither H1 nor H2 meets C, otherwise mult C = 1 and
there would be another exceptional curve in FE. Therefore both H1, H2 meet
FE n D and we have a loop in D (since H1, H2 meet Fo). Thus 03C3(FE) = r + 2.
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Suppose that there exists a singular fibre FI different from Fo and FE. Then
the unique S-component of FI is the only exceptional curve in FI. But the
multiplicity of this component is 1 by (1.2). This implies that Fi contains another
exceptional curve. So any fibre different from Fo and FE is isomorphic to P1 and
the horizontal components meet it in two different points, since otherwise there
would be a loop in D. Hence S - FE ~ S - E contains A1* x A1*. Again,
03C01(S - E) is abelian and, by (2.8), 03C01(S - E) ~ Za and X is simply connected.
H2(X; Z) = 0 = Pic(X), invertible functions on X are constant and X contains
A1*  A1*.
Suppose that the complement of /E§  A1* in X contains 3 curves. Let h1, h2, h3

be the equations of these curves. Then hi, i = 1, 2, 3, is invertible on A1* x A1*,
hence there are integers kl, k2, k3, not all of them are equal to 0, such that
hil = hk22·hk33. Then kl(hl) = k2·(h2) + k3(h3). But the divisors (hi) are distinct.

Suppose that there is one curve in the complement. Let x, y be coordinates on
A1*  A1* c X. Then there exist m, n such that m(x) = n( y). But then xm = cy" for
some c ~ 0.

Hence the complement of A1* x A1* in X contains exactly two curves. Let
hl, h2 be their equations. Let as before x, y be coordinates on A1*  A1*. Then
there exist m, n such that (x) = m(hl) + n(h2). Hence x = chm1hn2 for some

constant c. Similarly y = c1hm11hn12. Hence h1, h2 can be taken as coordinates on
A’ x A1*.

In particular a curve h 1 = a ~ 0 is isomorphic to A1*. Let C = Ci U C2 be the
complement of A1* x A1* in X. One can easily compute that bo(C) = 1, bl(C) = 0.
In particular Cl n C2 e 0, which implies that C2 is not contained in a fibre of
the mapping h1: X ~ A1. Hence the general fibre meets C2 and therefore is

isomorphic to A1. So k(X) = - oo, which implies k(S - E) = - oo.
Now we consider the possibility IIb.
If we add the horizontal components to our S we obtain a simply connected

surface S°. By (1.2.) there are at most two multiple fibres of the induced ruling
f0: S0 ~ P1. Of course mult f = multf0. Hence there are atmost two multiple
fibres of the ruling f:S ~ P1. Assume that multS(FE)  2 or that there exists
only one S-multiple fibre F1. Consider a singular fibre F different from FE and
Fl. F contains exactly one S-component G. It follows that G is the unique
exceptional curve in F. But this is not possible since mult(G) = 1. Therefore any
fibre different from FE and Fi is isomorphic to P1. As in case IIa FE n D is
connected and both H1, H2 meet FE n D. Therefore H1, H2 meet any fibre F
different from FE and FI in two distinct points. It follows that S - E contains
A1* x A1*. As in IIa, k(X) = - oo and k(S - E) = - oo.
Thus we may assume that mults(FE) = 1 and that there exist two multiple

fibres F 0, FI; of course 6(FE) = r + 1, 03C3(F) = 1 for any other fibre F. Let us
examine FE. Let C be the unique S-component of FE not contained in E. Then C
is the unique exceptional curve in FE . It follows that C must meet E in a terminal
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component, say Er. It is easy to see that mult(Ei) divides the multiplicities of
E2,...,Er, C. Thus mult(Ei) = 1. Let T = E + ... + Er + C + D + ... + DS
be the maximal linear chain in FE . Suppose Ds. Ds+ 1 = 1, DS+1 is a branching
component of FE. The chain T is obtained by successive blowings up over DS+ 1.
Hence mult Ds+ 1 = 1, otherwise the multiplicities of all components of T are
greater than 1. After shrinking T, D,+, 1 becomes an exceptional curve of

multiplicity 1. This is impossible since, in the new fibre, DS+1 still meets at least
two other components. Hence FE is a rational linear chain with top component
D,. El and D, are the only components of FE of multiplicity 1. It implies that
both Hl, H2 meet D, and that, in the process of shrinking FE to Pi, El and D,
become exceptional on the last but one stage. It follows that G is the unique
exceptional curve in F. But this is not possible since mult(G) = 1. Therefore any
fibre différent from FE and F 1 is isomorphic to P1. As in IIa, FE n D is connected
and both H1, H2 meet FE n D. Therefore H1, H2 meet any fibre F différent from
FE and Fi in two distinct points. It follows that S - E contains A1*  A1*. As in
IIa, k(X) = - ~ and k(S - E) = - 00.
Thus we may assume that mult(FE ) = 1 and that there exist two multiple

fibres F0, F1; of course 6(FE) = r + 1, 6(F) = 1 for any other fibre F. Let us

examine FE . Put So = (S U ~s-1i=1 Di) - DS . Let p: S ~ p(S) be the contraction of
E2 +... + Ds-1. Put S = p(So) - p(Ds)’ We will show that k(S 1 ) = - oJ. S is
obtained from So by successive contractions of curves in FE. Of course

k(S0) = - 00 since S c So. So long as we contract curves entirely contained in So
the Kodaira dimension does not change. Suppose that we come to a situation
when we have to contract a curve C meeting DS. Let S be the surface obtained
from So at this stage, i.e. just before contracting CI. Let D be the boundary
divisor of S. Let 51 =  - C 1. Suppose that nK + nD + mC1  0, where m &#x3E; 0

and K is the canonical divisor on the compactification of S. Then

C1(nK + n + mC1) = -m  0. Hence C1 is a fixed component of

nK + nb + mCl. It follows that nK + n  0; contradiction since k(S) = - oc.
Thus k(S1) = - oo . Therefore we may shrink C1 and get a surface with Kodaira
dimension - oo. The curve p(E1) is an exceptional curve meeting the boundary
divisor of S transversally in one point. Repeating the argument above we infer
that k(S1-p(E1))= -~. But S1-p(E1)=S-E-C~S’-q;
contradiction.

Section 6

It follows from (5.1) that k(S’ - q) ~ 1. Otherwise, by virtue of ([3], (6.11)) there
would exist a ruling of S’ - q with general fibre isomorphic to an elliptic curve
or A1*. From now on we assume that k(S’ - q) = 0. We will show that this also
leads to contradiction.
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We will use the following known fact ([3], proof of Thm. (8.5)).

6.1. LEMMA. Let Y be a smooth surface with k(Y) = 0. Suppose that there exists
a nonconstant invertible function on Y and that Y contains only finitely many
compact curves. 7hen Y is A’-ruled.

Proof. We get a dominant morphism f : Y - A1*. Let f’: Y - C - A1* be its
Stein factorization. For generic c ~ C, by Kawamata’s Addition Theorem [4], we
obtain k(Y)  k(f’-1(c)) + k(C) and k(C)  k(A1*) = 0. Thus k(C) = 0 and
k(f’-1(c)) = 0 which implies f’-1(c) ~ A1*.

In the process of constructing the relatively minimal model of S - E, ([3] or
[10]), we may have to contract some exeptional curves in S not contained in
D ~ E for which k(S - E - C) = k(S - E) = 0. Suppose C is such a curve. Then,
since Pic(S - E) is torsion, there exists an invertible function on S - E - C. But
then, by lemma 6.1., S - E - C is A1*-ruled which is impossible by virtue of 5.1.
Hence we may assume that (S, D ~ E) is a relatively minimal model of S - E, i.e.
that the negative part (K + D + E) - in the Zariski decomposition of

K + D + E does not contain an exceptional curve.
Fujita ([3], Thm. 8.8.) classifies the connected components of the boundary

divisor of a relatively minimal surface with Kodaira dimension 0. In our case
there can be only three possibilities for D.

6A. D is a rational tree with precisely two branching components and four tips
T,, T2, T3, T, with 7,’= -2.

6B. D is a rational tree with three twigs Tl, T2, T3 and their common branching
component. In this case 03A3d(Tj)-1 = 1.

6C. D is a rational tree with four tips Tl, T2, T3, T4 and their common branching
component. Moreover, T2i = -2.

In all these cases (K + D + E) - = Bk(D) + Bk(E).

6.2. REMARK. Since k(S - E) = 0, (K + D + E)+ ~ 0, ([3], 6.11). Hence

K + D + E ~ (K + D + E)- = Bk(D) + Bk(E). Here xr stands for numerical

equivalence.
We consider the three cases separately.

Case 6A. We need some elementary facts about determinants. Let

D = CI + ... + Cn be a connected rational tree on a projective smooth surface.
We denote d(D) = det[-Ci· Cj]1i, jn. Let C1 ~ C2 = {p}. Let D1 be the sum
of components Cj contained in the connected component of D - {p} containing
C1 - {p}. Similarly we define D2. Let D1 = D1 + Cl, D2 = D2 + C2- Dl, D2 are
subtrees of D and D = D1 + D2. Then one can show that
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In our case let D = B, + B2 +... + B, + Tl + T2 + T3 + T4 where Bl, B, are
the branching components, Tl, T2 meet Bi and T3, T4 meet B,. We may assume
that B2i  -2 for 1  i  s.

Suppose that B21  -2. Then one can show, using (*) above and Sylvester’s
criterion, that the intersection matrix of B1 + ··· + Bs-1 + T1 + T2 + T3 + T4
is negative definite. Thus d(D)  0. Otherwise the intersection matrix of D is

negative definite which is not the case since D is a boundary divisor of the affine
surface S’. Applying (*) for Ci = Bl, C2 = B2 we obtain d(D (2»  d(D(3)), where
D(i) = Bi + ··· + Bs + T3 + T4.
Next apply (*) for Cl = B2, C2 = B3, D = D (2). We get d(D (3»  d(D(4». By

induction we obtain d(D(s - 1))  d(D(s)).
Now d(D(s - 1)) = 4(B2s-1·B2s + B2s-1 - 1), d(D(s)) = 4( - Bs - 1). Hence

B2s-1·B2s+B2s-1-1-B2s-1. This implies (-B2s-1)(-B2s-1)1.
But -B2s- 1  2. Therefore B2s  -1. So we proved that B21  -1 or B2s  -1.
Assume B21  -1. After blowing up successively over BI n B2 we may assume
that B2 = -1. Then F = Tl + 2Bl + T2 gives an A1*-ruling of S - E.

6.3. LEMMA. a divides det[DiDj], where D = Dl +... + Dn.
Proof. Take a small tubular neighborhood U of D. Then (Mumford [9]) the

order of H,(U - D: Z) is equal to |det[DiDj]|. We know that U - D admits a
cyclic covering of degree a (note that X is affine, hence connected at infinity).
Therefore there exists a surjective homomorphism 03C01(U - D) ~ Za. It factors
through 03C01(U - D) ~ H1(U - D). Hence 7La is a quotient group of

H1(U - D; Z).
Actually the stronger fact is true:

6.4. LEMMA. a = !det[D,D,].
Proof. Let L be an irreducible curve such that LE1 = 1, LEi = 0 for j  2.

Then L, D1,..., Dn, E 1, ... , Er-1 are free generators of Pic(S). In particular, the
determinant of the intersection matrix of this configuration equals T 1. We
know that the divisor aL is supported on D ~ E. Thus there exist integers ki, ej
such that aL - lc= 1 kiDi + 03A3rj=1 ejEj. Hence aLDj = X kiDiDj, j = 1,..., n.

Let A be the intersection matrix of D1,..., Dn; let B be the intersection matrix
of L, D1,...,Dn,E,...,Er-1. Let Ai denote the matrix obtained from A by
replacing the i-th column by (LD1,...,LDn)T. By Cramer’s rule,
kidet A = a det Ai, i = 1,..., n. Let det A = ka. Then

6.5. k divides det Ai, i = 1,..., n.

Expanding det B along the first row we have
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Every term in this expression is divisible by k.

Case 6B. We have D = B + Tl + T2 + T3, where B is a common branching
component of the twigs Tl, T2, T3. Since 03A33i=1 d(Tj)-1 = 1, the triplet (d(Tl), d(T2),
d(T3)) is, up to permutation, one of the following: (3, 3, 3), (2,4,4), or (2,3,6).

6.6. Suppose that (d(Tl), d(T2), d(T3)) = (3,3,3). Then

or

Let

Every coefficient in Bk(Ti), i = 1, 2, 3, equals 1 3 or 2 3. Let C be an irreducible curve
which meets Ei transversally once and does not meet E2 u ... ~ Er. Then

Hence ni = k/3 for some integer k. But 0  ni  1 except in the case where

Ej2 2, j = 1,..., r. Then ni = 1, j = 1,..., r. In this case one checks easily that
sE is a fixed component of s(K + D + E) and hence k(S - E) = k(S) = - oo.
We infer that ni = 1 3 or ni = 2 3. Similarly, nr = 3 or nr = 2 3. Also

(K + D + E)2 = 03A3(BkTi)2 + (BkE)2 = -e(T1) - e(T2) - e(T3) - ni - nr. The

sum on the right-hand side is an integer, each summand is equal to 1/3 or 2/3.
Assume that e(T1)  e(T2)  e(T3) and n1  nr. We have only the following
possibilities:
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Now we list all possible configurations of E. Consider for instance the case

By definition of the bark

Hence

Thus

where k2 is an integer. By induction

Hence

for every i. Also

Let

Then

Therefore s = r. From (*) we can compute E2 i = l, ... , r. Similar reasoning
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applies in every case. We indicate below the dual graphs of E. The numbers
above a graph are the corresponding ni, the numbers below are the correspond-
ing self-intersection indices. We indicate the relation between a and r.

In the three cases above a = 9(r - 1).

Here a = 3(3r - 1).

In the two cases above a = 9r - 15.

Now we consider cases according to the above table.

6.6(a). In this case

Therefore
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The T are tips of

where

From Riemann-Roch

But (K + D + E)2 = - 2. Hence 2K + D + E  0. Er is a fixed component of
2K + D + E hence 2K + D + E’  0. Now, from (*) we get that

But

We get 3B + Tl + T2 + T3 + E’ + 2Er  0, contradiction.

d(D) = 9(-3B2 - 4), a = 3(3r - 1). d(D)  0, otherwise the intersection

matrix of D is negative definite. By virtue of (6.4), - 9( - 3B2 - 4) = 3(3r - 1).
Contradiction.

6.6(c). Tl is a tip with T 2 = -3, Ti = Ti1 + Ti2, T2i1 = T2i2 = -2, i = 2,3. By an
easy computation, d(D) = -9(3B 2 + 5). By virtue of lemma (6.4),
a = 9r - 15 = 9(3B2 + 5), which is absurd.

6.6(d). In this case
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Ti1 is the tip of the twig Ti. (K + D + E)2 = -3, hence K(K + D + E) = 1.
Furthermore KD = - 2 - B2, KE = 3. Thus K2 = B2. In view of Noether’s
formula, K2 + b2(S) = B2 + r + 7 = 10, and hence B2 = 3 - r. By (6.4),

which implies r = 4 and

where E24 = -2, E’ = E1 + E2 + E3. Suppose that C is an exceptional curve in
S. Then

which gives

and there exists an invertible nonconstant function on S - E - C, which is

impossible by virtue of (6.1). Thus CB = 0. We have two cases:

Consider F = 2B + T12 + T22. We have F2 = 0, pa(F) = 0. Therefore F

defines a P1-ruling of S. We have F Tl 1 = FT2l = 1, FT32 = 2, FT31 = 0,
FE = 0. E is contained in a fibre FE. There are three horizontal D-components:
T11, T2l, T32· One fibre is F and 6(F) = 0. Any other fibre contains at least one S-
component. By virtue of (1.1) we obtain 3-03A3+1-2=-4, i.e. 03A3=6.

REMARK. It follows from the expression for K + D + E that there is no curve
C in S such that C 2 - 2 except for those contained in D ~ E.

Suppose that T31 ~ FE. FE contains E and at least one S-component C not
contained in E. If there is only one such C then C is exceptional by the Remark
above. But this is not possible since C is neither of the type (i) nor (ii) as one
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can easily see. Hence FE contains at least 6 S-components. Then 03C3(FE)  6. The
fibre FI which contains T3, must contain at least two S-components. There-
fore 03C3(F1)  2. Since E = 6 we have 03C3(FE) = 6 and 03C3(F1) = 2. Then

FE = E ~ Cl U C2. Both Cl and C2 are exceptional by the Remark above and
both meet E. T32 meets Cl U C2. Let T32C1  1. Then Cl is of the type (i).
In particular C1T32 = 1, Cl(T12 + T22 + E’) = 0, hence C1E4 = 1 and

C1(Ti + T21 + T3,) = C1(T11 + T21) = 0. Both sections Tl 1 and T2, meet C2.
Thus C2 is of the type (ii). In particular C2T32 = 0 = C2E’ and C2E4 = 1. Hence
the dual graph of FE looks like

This is impossible. Such a configuration cannot occur as the fibre of a P1-ruling.
Therefore T3l c FE. If FE = Eu T3l U C then Tl 1 C = T2l C = 1. If follows that
mult(C) = 1. But C is exceptional and meets two components of the fibre which
implies mult(C)  2.

Suppose FE = E ~ C, u C 2 U T31. Both Cl and C2 are exceptional. Let

C1T31 = 1, CIE = 1. Then mult(C1)  2. Hence T11C1 = T2,Cl = 0,
T11C2 = T21 C2 = 1. Therefore C2 is of type (ii). In particular C2T 32 = 0. Hence
the horizontal component T3 2 meets C 1. It follows that C1 is of type (i). Thus
C 1 E’ = 0 and, from the first statement in (i), C 1 E4 = 0 since C1 1 meets T31. It
follows that C1 does not meet E; contradiction.
Hence o-(FE) = 7. FE = Eu Cl u C2 U C3 u T3l; the Ci are exceptional. Let

Ci T31 = CE = 1. Then T11C1 = T21C1 = 0 since mult(C1)  2. C is of type (i),
otherwise C1(T31 + E4) = 3. In particular C 1 E4 = 0 which implies C 1 E’ - 1.

Therefore CI T32 = 0. T32 meets the union C2 ~ C3. Let T32C2 = 1. T31C2 = 0,
otherwise the subtree C1 + T31 + C2 contracts down to a curve with selfinter-
section index equal to 0. Similarly T31 C3 = 0. C2 is of type (i) since it meets T32.
Therefore C2E’ = 0. But C2 meets E, otherwise C2 is an isolated component of
the fibre. Hence C2E4 = 1 and C2(Tll + T21) = 0. Therefore both horizontal
components Tl 1, T21 meet C3, which implies that C3 is of type (ii). It follows that
C3E4 = 1. This is impossible since then we could shrink C2 + E4 + C3 to a 0-
curve.

6.6(e). d(D) = 9(-3B2-4)0. We get 9(-3B2-4)=-3; absurd.

6.6(f). In this case
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By virtue of (6.4), 6 = 9(5 + 3B2); absurd.

6.7. Suppose that (d(Tl), d(T2), d(T3)) = (2, 4, 4).

Then e(Tl) = 1/2, e(Ti) = 1/4 or 3/4, i = 1, 2. Again, if Bk(E) = 03A3niEi, then
ni = 1/4 or 2/4 or 3/4, i = 1,..., r. We have the following possibilities:

Now we list all possible configurations of E.

In the two cases above r  5 and a = 16r - 56.
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In the three cases above r  3 and a = 16r - 32.

There is no E such that n, = 1/2, nr = 3/4.

6.7(a).

(K + D + E)2 = -2 hence K(K + D + E) = 2. By Riemann-Roch,

Therefore

It follows that 4K + 4B + 2Tl + 3 T2 + 3T3 + 2E = 0.
Then

Contradiction since 2(2K + D + E)  0.

6.7(a1). In a similar way:

where E’ = E 1 + ... + Er-2. Hence
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Notice that, since

Hence 2K + D + E’ + Er-1  0. Now

contradiction.

impossible.

6.7(bl) d(D) as in 6.7(b) ; a = 8 or a = 16r - 56. Again contradiction with (6.2).

6.7(c) Then T, consists of single component and

d(D) = - 32(B2 + 2). For any configuration of E, KE = 4. Applying Noether’s
formula, we obtain B2 + r = 3. Hence 16r - 32 = 32(5 - r). It follows that

Bk(E) = 1/4El + 1/4E2 + 1/2E3 + 3/4E4. As in 6.6(d) we may assume that
every exceptional curve in S does not meet B.

Consider F = 7i + 2B + T23. As in 6.6(d), F defines a P1-ruling of S. T2 2 and
T33 are the only horizontal components, T2l and T3l u T3 2 are contained in
fibres. There exists only one fibre F with 03C3(F) = 0, 03A3 = 5. E is contained in a
fibre FE .
Assume that 03C3(FE) = 5. Let C be the S-component not contained in E. C must

be exceptional and FE = Eu C u T2l or FE = Eu C u T3l ~ T32. One can
easily check that in both cases FE cannot be contracted to a 0-curve. Hence
u(F E) = 6. Assume that T2l is not contained in FE. Then the fibre Fi containing
T2l must contain precisely one S-component C’ and, therefore, it must contain
also T3l u T3 2. But then C’ meets two - 2-curves in Fi, which is impossible.
Therefore T2l c FE . In a similar way T3l u T3 2 C FE . Hence
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Both Cl and C2 are exceptional (see Remark 6.6(d)). One can check that such a
FE cannot be the support of a fibre of a P1-ruling.

6.7(cl). In this case B2 + r = 1, d(D) = -32(B2 + 2)  0. a = 4r. We get
24 = gr, contradiction.

Then e(Tl) = 1/2, e(T2) = 1/3 or 2/3, e(T3) = 1/6 or 5/6. As before we obtain that
ni = ki/6, 1  ki  5, where 03A3niEi = Bk(E). One can check that there is no E
with ni = 1 2, nr - 6 or n 1 = 6 , nr = 2 . (This follows from the fact that if ni = 2
then all ni equal -1. We have the following possibilities to consider:

Now we list possible configurations of E (we omit the configurations described
in (6.6) and 6.7)):

Here a = 36r - 24.
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In the two cases above a = 36r - 144.

In this case a = 36r - 264.

6.8(a) Tl = -2, Tl = -3, T22 = -6; B2 = 4, r = 9. (K + D + E)2 = -2, thus
K(K + D + E) = 2 and, from Riemann-Roch, 2K + D + E  0.

where Hence

We get a contradiction since 2K + D + E’ + E6 + E7  0 (because E8 + E9 is a
fixed component of 2K + D + E).

where E’ = E1 + ··· + Er - 1. Er is a fixed component of 2K + D + E. Hence
2K + D + E’  0. We get contradiction as in 6.8(a).

6.8(a2) 6K + 6B + 3 Tl + 4 T2 + 5T3 + 3E = 0. But 2K + D + E  0; contra-
diction.

This cannot happen.

impossible.
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6.8(c2) We get 12(3B2 + 4) = 36r - 264 or 12(3B2 + 4) = 24. This is impossible.

6.8(d)

d(D) = 36(-B2 - 2)  0; a = 36r -144. By standard arguments B2 = -1; r = 5.
Let F = Tl + 2B + T22. F defines a P1-ruling of S. E is contained in a fibre FE, F
is the only fibre with us(F) = 0. There are two horizontal components T2l, T3 s.
Therefore Y- = 6. Suppose that T31 ~ ··· u T34 is not contained in FE. Then FE
must contain at least two S-components not contained in E (if FE contains only
one such curve then there is no possibility to shrink FE to a 0-curve). Hence
03C3(FE)  7, which implies 6(FE ) = 7. Then the fibre Fi containing T31 ~ ··· u T34
contains exactly one S-component which must be an exceptional curve. Of
course this is impossible. Thus T31 ~ ··· u T34 C FE. Suppose that 6(FE ) = 6.
Let C be the unique exceptional curve in FE. C must meet E and it must meet
T31 ~ ··· ~ T34. Hence mult(C)  2. But this is impossible since the section T22
must meet C. Therefore FE = E ~ T31 ~ ··· U T 34 U Cl U C2. Both CI and C2
are exceptional (see Remark (6.6.d)). It is not difficult to check that such a FE
cannot be the support of a fibre of a P1-ruling.

6.8(dl) KE = 3, K 2 = B2, B2 + r = 1. Also, 9r - 9 = 36(B2 + 2). We get
13 = 5r; contradiction.

6.8(d2) KE = 2, a = 4r, B2 + r = 0. 4r = 36(B2 + 2) and 4r = 36( - r + 2). This
is impossible.

BkD = 1 2(T1 + T2 + T3 + T4). Hence n1 = nr = 1 2 and BkE = 2 E, a = 4r.

(K + D + E)2 = - 3, thus K(K + D + E) = 1. KE = 2, hence K(K + D) = -1.
In view of Noether’s formula, K2 + 5 + r = 10. Also d(D) = 16( - B2 - 2)  0.

We get 16(B2 + 2) = 4r, K2 + KB = K2 - 2 - B2 = -1, K2 + r = 5. Then
B2 + r = 4 and 4(B2 + 2) = r. We get 24 = 5r; contradiction.
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