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1. Introduction

In the study of the cohomology of arithmetic groups and its relationship with
the theory of automorphic forms it is of interest to have non-vanishing results
for cohomology classes of various types. In constructing cohomology classes
one uses analytic methods, e.g. liftings of automorphic forms, Eisenstein series,
or geometric ones as e.g. associating cycles to closed subgroups of the

underlying real Lie group. Some techniques and results are summarized in [44].
The object of this paper is to study some of these ideas in the case of an

arithmetic subgroup r of a simple algebraic group of type G2 defined over a
totally real algebraic number field k of d egree n. In particular, we construct
automorphic forms of cohomological interest. Assume that G is split at the
places v1, ... , v., m  n and compact at the remaining real places. Given any
integer r with 0  r  m and an n-tuple (A 1, ... , An) of non-negative integers we
show that there exists an irreducible automorphic representation 7r = ~03C003BD of

G(A) occurring in the cuspidal spectrum of L 2(G(k)BG(A» such that the

representation nvi of G(k03BDj) is equivalent to a discrete series representation A(Aj)
for 1  j  r, to a given non-tempered irreducible unitary representation B(Ai)
for r  j  m and to an irreducible finite dimensional representation C(Aj) for
m  j  n. The representations A(Aj) resp. B(Aj) have non-trivial relative Lie
algebra cohomology with respect to a suitable coefficient system depending on
Ai. The representations B(Ai) cover one half of the list (up to equivalence) of
non-tempered irreducible unitary representations of G(kvj) with non-trivial
relative Lie algebra cohomology. As immediate consequences one obtains
various results pertaining to the cohomology of arithmetic groups. We mention
as one example in the case that G is split at all places vj the following one: The
cusp cohomology H*cusp(X, C) of the arithmetic group (see Section 5 for

definition) does not vanish in degree 4r + 3(n - r) resp. 4r + 5(n - r) for any
integer 0  r  n. In terms of relative Lie algebra cohomology, these non-
vanishing classes correspond to irreducible unitary représentations 7c = ~03C003BD, of
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G(A) occurring in the cuspidal spectrum L[(G(k))G(/E)) such that the represen-
tation 03C0vj is equivalent to A(0) for j = 1,..., r resp. B(0) for j = r + 1,..., n.
The cuspidal representations 03C0 are constructed by means of the global theta

lifting related to the dual reductive pair (HQ, SL2) where HQ denotes a suitable
orthogonal group containing G as a subgroup. Of course, this procedure is
inspired by the work of Rallis and Schiffmann [38]. In doing so we need to
construct specific automorphic forms on the metaplectic two-fold cover SL2(A)
of SL2(A).

In the following sections the theory of Eisenstein series will be used to

construct by analytical means certain cohomology classes in H*(X, C) which are
represented by a regular value of a suitable Eisenstein series or a residue of such.
As one result we show for k = Q that the cuspidal cohomology classes, so
constructed in H3(X, C), are shadows of residual Eisenstein cohomology classes.
Here we mean that the latter ones correspond to irreducible unitary automor-
phic representations rc = ~03C0v of G(A) occurring in the residual spectrum
L2res(G(Q)BG(A)) such that the representation 03C0~ is again equivalent to B(0).
The paper is organized in the following way. In Section 2 we describe (up to

equivalence) the non-tempered unitary representations with non-trivial relative
Lie algebra cohomology of the split simple real Lie group G2. This is done by
making explicit the general parametrization of unitary representations with
non-zero cohomology given in [52].

Via the local theta correspondence, a holomorphic representation of half
integral weight m of the metaplectic two-fold cover SL2(R) of SL2(R) corre-
sponds to an irreducible unitary representation 03C0(m) of O(4, 3) resp. SOo(4, 3).
Viewing the real Lie group G2 as a subgroup of SOo(4, 3) it is the main purpose
of Section 3 to prove that for m the restriction of rc(m) to G2 is equivalent to
one of the non-tempered representations Aq(03BB) discussed in Section 2 with a
suitable parameter 03BB and hence irreducible. Starting with an antiholomorphic
representation of half integral weight m, m  - 2, of SL2(R) one obtains via the
local theta correspondence a discrete series representation of G2 in this way.
By use of the global theta lifting it is shown in Section 4 that for a given n-

tuple A of parameters Aj, j = 1,..., n there exists an irreducible representation
03C0 = ~03C0v, of G(A) occurring in the cuspidal spectrum of L2(G(k)BG(A)) such that
the representation nv. of G(kv.) is of the type as described above. The necessary
construction of specific genuine cuspidal representations of SL2(A) is dealt with
as well. The consequences of this result for the cohomology of arithmetic
subgroups of G alluded to above are discussed in Section 5.

In Section 6 we review the procedure for the construction of Eisenstein
cohomology classes for arithmetic groups as discussed e.g. in [10], [42]. We
make explicit in our case the cohomology of the strata at infinity, and we
perform some calculations concerning the Eisenstein series we need. These
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results are used in Section 7 to describe, in the case k = Q, the image of the
restriction map

of the cohomology of X to the cusp cohomology of a stratum X’ corresponding
to a maximal parabolic Q-subgroup P of G. In particular, we exhibit regular
Eisenstein cohomology classes, and it is discussed under which conditions

residual Eisenstein cohomology classes exist. This condition is formulated in
terms of a non-vanishing condition for certain partial L-series of GL2. These
automorphic L-functions naturally appear in the constant terms of the

Eisenstein series under consideration.

The first named author was supported by NSF grant No. DMS-9003999. The
’Prix Alexandre de Humboldt pour la coopération scientifique franco-

allemande’, in particular the Ecole Normale Supérieure, Paris, as host in-

stitution, supported the second named author during a certain period of this
work. He is grateful for this support. We would like to thank as well the Institute
for Advanced Study, Princeton, for its hospitality in the fall 1990 when parts of
this paper were written.

NOTATION AND CONVENTIONS. (1) Let klQ be an arbitrary finite

extension of the field Q, and denote by (9k its ring of integers. The set of places of
k will be denoted by V, and Voo (resp. Vf) refers to the set of archimedian (resp.
non-archimedian) places of k. The completion of k at a place v ~V is denoted by
k"; its ring of integers by (9, (v c- Vf). For a given place v E V the normalized
absolute value 11, on kv is defined as usual: If v E V~ is a real place we let v, to be
the absolute value; if v ~ V~ is a complex place we put IXviv = Xv’ Xv and if v ~ Vf is
a finite place we define |xv|v = N; ordv(xv) where N v denotes the cardinality of the
(finite) residue field at the place v.
We denote by A = Ak (resp. 9 = Ok) the ring of adeles (resp. the group of ideles)

of k. There is the usual decomposition of A (resp. 0) into the infinite and the finite
part A = A~ x Af (resp. 1 = 1~ x 0 f).

(2) The algebraic groups considered are linear. If H is an algebraic group
defined over a field F, and F’ is a commutative F-algebra, we denote by H(F’) the
group of F’-valued points of H. When F’ is a field we denote by H/F’ the F’-
algebraic group H xF F’ obtained from H by extending the ground field from F
to F’. When F’ is the field R of real numbers we occasionally write H 00 instead of
H(R).

(3) With respect to the algebraic groups of type G2 we refer the reader to [16]
and [38], Section 1. There one finds a description of an explicit model for the
split group of type G2 and basic facts about roots and parabolic subgroups we
need.
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2. Unitary représentations with non-zéro cohomology

In this section we describe (up to equivalence) the non-tempered unitary
representations with non-zero cohomology of the split simple real Lie group G2.
This is done by making explicit the general parametrization of unitary
representations with non-zero cohomology given in [52].
2.1. Let G be the split simple real Lie group of type G2 ; the group G2 is

connected. We write g,, for the Lie algebra of G, and g = (go)C for its

complexification. Analogous notation is used for other groups. Let K ~ G be a
maximal compact subgroup, let 03B8 = 03B8K be the Cartan involution, and let

go = lo + Po be the corresponding Cartan decomposition. It is well known that
te = sp(1)~ sp(1). Fix non-zero elements ix, iy belonging to the first and second
summand respectively, and let i to be the real vector space spanned by ix, iy.
Then to z fo is a Cartan subalgebra. We have t0 ~ R ~ R ~ R2 resp. t ~ C2. If
03B51, 03B52 denotes the evaluation in the first and second coordinate respectively then
the roots of g with respect to t may be described by

where A(î,t)={±2ei,±2e2} resp. A(p,t)={±(s2±Si), ± (381 ± 03B52)}. Taking
03B11 =03B52 - 03B51 and a2=381-82 as simple roots we have

Given a fixed element x = (a, b) E to there is an associated 0-stable parabolic
subalgebra q (in the sense of [52], 2.2) of g with Levi decomposition q = 1 + u,
defined by q = sum of non-negative eigenspaces of ad(x), u = sum of positive
eigenspaces of ad(x), and 1 = sum of zero eigenspaces of ad(x) = centralizer of x.
Recall that the linear transformation ad(x) of g is diagonalizable, with real
eigenvalues. Let L be the connected subgroup of G with Lie algebra £0 = I ~ g0.
Let be the differential of a unitary character of L such that ~03B1, 03BB|t~  0 for each
root a of u with respect to t. Such a one-dimensional representation 03BB : 1 - C is

called admissible. Given the data q and there is a unique irreducible unitary
representation Aq(03BB) with non-zero cohomology (cf. [52], Thm. 5.3); its Harish-
Chandra module is denoted by the same letter.

If x = 0, then we obtain the trivial representation. If 1 z f (and in fact only
then), Aq(03BB) is a discrete series representation ([52], p. 58). Observe that there are
(up to equivalence) exactly three discrete series representations having the same
infinitesimal character.

For j = 1, 2, let xj = (a, b) E t0 be an element in to with 03B1j(xj) &#x3E; 0 and 03B1k(xj) = 0
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for k ~ j. Such a choice determines a 0-stable parabolic subalgebra qj = Ij + uj.
One sees that Lj = U(l) x SL2(R), j = 1, 2. For example, u, is the sum of the root
spaces corresponding to the roots 03B11 + 03B12, 303B11+03B12, 303B11+203B12, 203B11,+03B12,
- (2(Xl + (X2)’

2.2. LEMMA. Let qj = Ij+uj be a 0-stable parabolic subalgebra of g as

constructed from a given Xj chosen as above, and let À: Ij ~ C be an admissible
character.

(1) Then the unique irreducible unitary representation Aqj(03BB) is non-tempered.
(2) The restriction of Aqj(03BB) to f contains the representation of K of highest weight

Àlt+2p(unp) [where we use the notation p(u n p) as introduced in [52], 2.3].
(3) The center Z(g) of the universal enveloping algebra of g acts by x03BB+ p on Aqj(03BB)

where x03BB+ p : Z(g) ~ C is given by composition of the Harish-Chandra homo-
morphism with evaluation at À + p ([52, 2.9).

(4) Suppose F is a finite dimensional irreducible representation of g, of lowest
weight -y E t*. Then H*(g, K; Aqj(À) (D F) = 0 unless y = Âlt, in which case

Proof (1) follows from the fact that [li, li] e f, i = 1, 2 and a criterion for

temperedness (see [52], p. 58) and (2), (3) resp. (4) are Thm. 5.3 resp. 5.5 in [52].

2.3. REMARKS. (1) For the sake of completeness we note that a discrete series
representations OJ of G2 has non-trivial (g, K)-cohomology with respect to a
finite dimensional irreducible representation E if (and only if) the infinitesimal
character of OJ coincides with the one of the contragredient representation E* of
E. In such a case one has ([6], II, 5.3, 5.4)

(2) Together with the trivial representation, the three discrete series represen-
tations and the two non-tempered representations Aqj(0), j = 1, 2, exhaust all
irreducible unitary representations (03C0, H03C0) of G with non-trivial (g, K)-
cohomology H*(g, K; H03C0, p C) up to equivalence.

2.4. THE COMPACT REAL FORM. Let G be the compact real form of the

simple real Lie group G2. Let i to be a Cartan subalgebra of Lie(G) = g. Then one
can define the representations Aq(03BB) exactly as before. However, it turns out that
the representation Aq(03BB) is nothing but the irreducible finite dimensional

representation of G with extremal weight 03BB|t.
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3. Local lifting from SL2(R)

The split simple Lie group G2 may be viewed as a subgroup of the connected
component containing the identity SOo(4, 3) of SO(4, 3). On the other hand, via
the local theta correspondence a holomorphic representation of half integral
weight k of the metaplectic two-fold cover SL2(R)) of SL2((R) corresponds to an
irreducible unitary representation 03C0(k) of 0(4,3) resp. SOo(4, 3). It is the main
purpose of this section to prove that for k  2 the restriction 7r(k)IG to G is
irreducible and equivalent to Aq(03BB) with defined by Âlt = (k -f)(2a 1 + a2) and
q = q 1 as in 2.2. Since the representation Aq(03BB) is uniquely determined by the
action of the Casimir operator Q of g in its Harish-Chandra module and its
lowest t.-type, the proof reduces to determining these data for n(k)IG. Starting
with an antiholomorphic representation of half integral weight k, k  - 2, of
SL2(R) one obtains via the local theta correspondence a discrete series

representation of G2 in this way.

3.1. As before G denotes the split real Lie group G of type G2 ; it is connected and
may be viewed as a subgroup of (the connected component of the identity of)
SO(4, 3) (cf. 4.1). Consider g as a subalgebra of the Lie algebra of SO(4, 3); thus its
elements may be written as (7 x 7)-matrices. An invariant form (, ) on g is
defined by

If (Xi)i resp. (¥i)i are dual bases of g with respect to , &#x3E; then the corresponding
Casimir element is given by

it is a multiple of the Casimir element defined by the Killing form. The
restriction of , &#x3E; to t is non degenerate. Thus we may identify t* with t visa ( , ~.
Observe that we then have

The real Lie groups 0(4,3) and SL2(R) form a reductive dual pair inside
Sp14((R). Let OJ be the oscillator representation of the metaplectic two-fold cover
of Sp14((R). Use the same letter for the restriction of OJ to o(4,3) and SI2(R). The
Casimir element of SL2(R) defined by the Killing form is denoted by 03A9SL2(R).
3.2. LEMMA. There is the following relation between Q as defined in 3.1(2) and

£ISL2(R) with respect to the oscillator representation OJ
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Proof. Denote by eij (1  i, j  7) the matrix whose (i, j)-entry is equal to 1 and
otherwise zero. Then the elements

form a basis for the Lie algebra of SO(4, 3). Every element of g is a linear

combination of these elements, and thus Q may be written in terms of these. A

slightly tedious but completely straightforward computation shows

where ÇIO(4,3) denotes the Casimir element of O(4, 3) defined by the Killing form.
Now we use the realization of the oscillator representation OJ in the Schrôdinger
model (cf. [39]), i.e. cv acts on the space of Schwartz-Bruhat functions on the
matrix space (R7. Let x, (k = 1,..., 7) be the coordinates in the canonical basis of
R7. Then the action of the basis elements in (2) is given as follows:

These formulas imply the identities

Thus formula (3) may be written

But from Lemma 3.10 in [1] (cf. also [14]) one knows

hence our assertion holds.
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3.3. Let 03C3 be a (genuine) holomorphic discrete series representation of SL2(R) of
half-integral weight k (see e.g. [8]). The Casimir operator 03A9SL2(R) (defined with
respect to the Killing form) acts on the space of 6 by k(k - 2). Via the local theta
correspondence u corresponds to an irreducible unitary representation n(k) of
O(4, 3) (cf. [36] resp. [34, 35]). It is easy to see that the restriction of 03C0(k) to
SOo(4, 3) is again irreducible (cf. [25]). We have the following

3.4. PROPOSITION. Let 7r(k) denote the irreducible unitary representation of
O(4, 3) corresponding via the local theta correspondence to a genuine holomorphic
discrete series representation of SL2(R) of half integral weight k  1. Then the
restriction 7r(k)IG of 03C0(k) to G is irreducible and equivalent to Aq(03BBk) with Àk defined
by

Proof. Using 3.2 we see that cv(Q) acts on the space of 03C0(k)|G by the scalar

On the other hand we have 03BB|t = A(2a1 + (X2), A = k - 4’- and p = 503B11 + 303B12, hence
Q acts on the Harish-Chandra module of Aq(03BB) by

Using formulas 3.1(3) we obtain

which agrees with the scalar given in (1).
Now we determine the o-types occurring in 03C0(k)|G . The maximal compact

subgroup of SOo(4, 3) is SO(4) x SO(3). We fix a maximal torus it’0 in SD(4) x 50(3).
In the usual coordinates the compact roots of t’ in 50(4,3) are + el ± e2, ± e3. A
representation of eo(4) x SD(3) is therefore parametrized by a weight

Let m(b) be the multiplicity with which the representation corresponding to ô
occurs in 03C0(k)lSD(4) x SD(3). By Theorem 5 in [36] we know that
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with A = k - 2.
Now we recall that 10 ~ SP(1) x SP(1). The representations of 10 are therefore

parametrized by weights 03BC03B51 + vE2 with non-negative integers ,u, v. The multiplic-
ity of the corresponding representation in 03C0(k)|t is denoted by m(03BC, v). Since 10 is
naturally embedded into SD(4) x SD(3) we have

where the sum ranges over all representations n, of so(4) x 5o(3) occurring in

03C0(k)lSD(4) x SD(3), and m(li, v; b) denotes the multiplicity of the representation
corresponding to 03BC03B51 + 03BD03B52 in 7[bil.. Thus we have to determine m(/1, v ; ô).

There are standard isomorphisms r : SP(1) x SP(1) ~ eo(4) and s : SP(1) ~ SD(3).
Putting these together we obtain

The map (x, y)-I(x, y, x) gives the embedding of o = SP(1) xsp(1) into

so(4) x so(3). The pull back of a given representation 7r,, of SD(4) x SD(3) with
ô = 03B41e1 + b3e3 to sp(l) x 5p(l) x sp(l) has highest weight (b1, bl, 2Ô3). Thus one
has m(03BC, v ; 03B4) = 0 unless v = 03B41. In this case m(p, v ; ô) is equal to the multiplicity
with which the representation corresponding to 03BC occurs in the inner tensor

product of the representations corresponding to v resp. 2Ô3. But this is easily
computed using Steinberg’s formula (cf. e.g. [ 15], 24.4). We find (03BC;03BD;03B4)=0
unless v = 03B41 and y + v is even in which case we have

Combining this with (3) and (4) we obtain (/1 + v even)

In particular we find that the representation of t. with highest weight
(A + 3)(03B51 + 82) occurs with multiplicity one. Thus we have that Aq(03BB) is contained
in 03C0(K)|G. On the other hand, Theorem 6.17 in [52] gives by use of Vogan’s
generalized Blattner formula the multiplicity with which a representation of Io of
highest weight Me, + 03BD03B52 occurs in Aq(03BB). It is a straightforward computation to
show that the expression given there coincides with the one of (6) for J1 + v even
and is zero otherwise. This implies that 03C0(k)|G is equivalent to Aq(03BB); in particular
the former one is irreducible.

3.5. Write W = W(g, t) for the Weyl group of g with respect to t. Recall the
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Harish-Chandra isomorphism x : Z(g) - S(t)W. If 03BC~t*, then composition of X
with evaluation at J1 gives x03BC: Z(g) - C with x03BC = XÂ if and only if p E W- 03BB. We
have seen that a holomorphic representation of SL2(R) of lowest weight k, k  -21
which has infinitesimal character À’ = k -1, corresponds to the representation
Aq(03BB) which has infinitesimal character X, with y = Àlt + p = 203BB’03B11 + (03BB’ + 2)03B12.
More generally, the following holds

PROPOSITION. Let u be an irreducible admissible genuine representation of
SL2(R). Then 6 corresponds (via the theta correspondence to SO(4, 3) followed by
restriction) to a representation of G with infinitesimal character Xy with

y = 203BB’03B11 +(03BB.’ + )03B12 where À’ denotes the infinitesimal character of 6.
Proof. Let g’ be the complexified Lie algebra of SL2(R). There exists a

homomorphism 03C8 : Z(g) ~ Z(g’) such that 03C9(03C8(z)) = OJ(z) for z E Z(g) (see
Theorem 3, Section 4 in [38]). This gives rise to the correspondence of

infinitesimal characters 4( *: (t’)*/W’ ~ t*/W where t’ is a Cartan subalgebra of g’
and W’ = W(g’, t’) denotes the Weyl group of g’ with respect to t’. In the above
we have already seen the effect of this correspondence on the set of infinitesimal
characters of discrete series of weight k  2 which is a Zariski dense subset of
(t’)*/W’. Thus, gi* is as given in the claim.

3.6. Now suppose 0  k  2 for the lowest weight k of a given irreducible
admissible genuine representation of SL2(R). If we replace Aq(03BB) in 3.4 by the
more general kind of derived functor module Rsq(03BB) (see [51], Section 6.3), then
the proof can be carried through word for word.
For example, we consider the case of a holomorphic representation of SL2(R)

of lowest weight 1/2; this is not a discrete series representation. However, via the
local theta correspondence it corresponds to an irreducible unitary represen-
tation 03C0 of 0(4,3) (see [25]). We claim that 03C0|G Rsp(03BB) is spherical. Let H6
denote the representation space of 6. By [25], Section 5 it suffices to exhibit a
Schwartz-Bruhat function ç in f(R7) invariant under O(4) x O(3) and an
element vEHu such that

We may take ~ = ~1 ~ ~2 where ~1 ~f(R4) is invariant under 0(4) and
~2~ S(R’) is invariant under 0(3). The trivial representation of O(4) corresponds
(via theta lifting) to the holomorphic representation a 2 of SL2(R) of lowest
weight 2, while the trivial representation of O(3) (considered to be defined by a
negative definite quadratic form in 3 variables) corresponds to the anti-

holomorphic representation 03C3-3/2 of highest weight 3/2. We have

(03C9(x)~, ~) = (03C32(x)~1, ~1)(03C3-3/2(x)~2, ~2) in an obvious sense. Now the contra-
gradient representation of 03C3-3/2 is the holomorphic representation a 3/2 of
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lowest weight 3/2. Thus we have

Now (03C33/2,(x)~2 2) 03B4(x)v,v) is a matrix coefficient of the tensor product
0-3/2 ~ 03C3 which contains Q2 with multiplicity one. If we choose v to be the lowest
weight vector (of weight 1/2) then ((03C33/2(x)2 2)(03C3(~)v, v) is a constant multiple
of (03C32(X)~1 ~1). For these choices of ~ and v we have that the integral (1) does
not vanish. This proves our claim. The proposition in 3.5 shows that it has
infinitesimal character Xy with y = - a 1 which lies in the W-orbit of 03B11. We thus
obtain

PROPOSITION. Let 03C0() denote the irreducible unitary representation of O(4, 3)
corresponding via the local theta correspondence to the holomorphic irreducible
genuine representation of SL2R) of lowest weight !. Then the restriction 03C0(2)|G
contains the unique irreducible spherical subquotient of IndGB~ where B denotes a
Borel subgroup of Gand ’1 = al. Here normalized induction is used.

REMARKS. (1) One can show that 03C0(|G is in fact irreducible. However, the
proof of this fact would take us a little too far away.

(2) One should compare this with the result of Rallis-Schiffmann [37], where
they find the same parameter 03B11 in the p-adic case.

3.7. THE COMPACT REAL FORM. Let G be the compact real form of the

simple real Lie group G2. Following similar arguments as given in the split case
(but in substance easier) one has the following

PROPOSITION. Let 0- be an irreducible admissible genuine representation of
SL2(R) of half integral weight k  !. Then 0- corresponds to the finite dimensional
irreducible representation Aq(À) of G with extremal weight 03BB|t=A(203B11+03B12),
A = k - 2 (see 2.4 for the notation).
REMARK. Note that in this case for k  2/7 the local lifting from SL2(R) to 0(7) is
identically zero (cf. [19]).

3.8. DISCRETE SERIES REPRESENTATIONS. Now we consider a (genuine)
antiholomorphic discrete series representation 0- of SL2(R) of highest weight
k  - 2/7. Via the local theta correspondence 0- corresponds to an irreducible
unitary representation n(k) of O(4, 3). It will turn out that the restriction 03C0(k)|G of
n(k) to G is irreducible and equivalent to a discrete series representation of G. It
will be convenient to realize n(k)IG as some Aq(03BB).

Let q be the 0-stable parabolic subalgebra of 9 defined by the element
x = (1, 0) in to; we have the Levi decomposition q = I + u as in 2.1. The

corresponding Levi component L is of the form L = U( 1 ) x Sp(1) where the semi
simple part Sp(1) is generated by the long compact root. Given the data q and an
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admissible one-dimensional representation À: 1 ~ C the irreducible represen-
tation Aq(03BB) belongs to the discrete series since L is compact. Observe that such a
À is determined by its restriction to t.

PROPOSITION. Let 03C0(k) denote the irreducible unitary representation of 0(4,3)
corresponding via the local theta correspondence to a genuine antiholomorphic
discrete series representation of SL2(R) of highest weight k  2. Then the
restriction 03C0(k)|G of7r(k) to G is irreducible and equivalent to Aq(03BBk) with Àk defined
by

The proof follows that of Proposition 3.4 almost word for word so we omit it.

3.9. Summarizing the content of 3.4, 3.8 resp. 3.7 we introduce the following
notations pertaining to the irreducible (unitary) representations of the split real
Lie group G of the type G2 resp. the compact real form:

(a) As before x(k) denotes the irreducible unitary representation of 0(4,3)
corresponding via the local theta correspondence to a genuine antiholomorphic
discrete series representation of SL2(R) of highest weight k  - 7/2. Then the
restriction of 03C0(k) to G will be denoted by

with

Recall that this is a discrete series representation.
(b) Let x(k) denote the irreducible unitary representation of 0(4,3) corre-

sponding via the local theta correspondence to a genuine holomorphic discrete
series representation of SL2(R) of lowest weight k  2. Then the restriction of
03C0(k) to G will be denoted by

with

(c) In the case of the compact real form the irreducible representation Aq(03BBk) of
G with extremal weight 03BBk|t = (k-7/2)(203B11+03B12), 7/2 introduced in 3.7 will be
denoted by C(k - 7/2).
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4. Cusp forms via global theta-lifting

Let G be a simple algebraic group of type G2 defined over a totally real algebraic
number field k of degree n = [k: Q]. Assume that G is split at the places
v1, ... , vm, m  n, and compact at the remaining real places. Given any integer r
with 0  r  m and an n-tupel (A 1, ... , An) of non-negative integers Ai we show
in this section that there exists an irreducible automorphic representation
rc = ~ 03C0v occurring discretely in L2(G(k)BG(A)) such that the representation 03C0vj of

G(kv) is equivalent to A(Aj) for 1  j  r, to B(Aj) for r  j  m and to C(Aj) for
m  j  m.

4.1. THE SPLIT SIMPLE k-GROUP OF TYPE G2. Given an algebraic
number field k there is a uniquely determined Cayley algebra over k with
divisors of zero; it is called the split Cayley algebra C over k ([41], Lemma 3.16).
Its norm form is non degenerate. Let G be the group of automorphisms of C; its
Lie algebra, by definition, the derivation algebra D(C) of C is a 14-dimensional
central simple Lie algebra of type G2. The span Co of elements of trace zero
coincides with the space spanned by the commutators [x, y] = xy - yx, x, y E C.
Hence one has CoD c Co for a derivation D, and thus Co is a 7-dimensional
subspace of C which is invariant under D(C). The representation in Co is faithful
and irreducible. In turn, if g E G then g(1) = 1 and g leaves the norm form of C
invariant, and hence, as an endomorphism of Co it may be viewed as an element
of the orthogonal group HQ where Q denotes the restriction of the norm form
to Co .

4.2. GLOBAL THETA-LIFTING. Now we assume that k is a totally real

algebraic number field of degree n = [k : Q]. Let SL2(A) be the adelic metaplectic
two-fold covering of SL2(A). Recall that we may consider SL2(k) as a subgroup
of SL2(A). The group SL2(k) is a direct product of SL2(k) and a group
isomorphic to Z2. As usual automorphic forms on SL2(A) are defined with

respect to SL2(k) (see e.g. [8]).
Now we consider the reductive dual pair (HQ, SL2). The choice of a non-trivial

additive character 03C8 of A/k determines a global oscillator representation 03C903C8 of

SL2(A) x HQ(A) in the space g(co(A)) of Schwartz-Bruhat functions on co(A).
We may write 03C8 = ~v~V 03C8v, and we choose 03C8 so that for v E V,,,

with av &#x3E; 0 holds. Given qJEY(Co(A)) we put for g ~ SL2(A) and h~HQ(A)
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This séries converges, defines a smooth function on SL2(A) x HQ(A) which is left
invariant under SL2(k) x HQ(k) and slowly increasing.

Let 03C3 = Q9(Jv be an irreducible automorphic genuine cuspidal representation
of SL2(A) occurring discretely in L2(SL2(k)BSL2(A))). Let v1,..., vn ~ V~ be the
archimedean places of k. Choose any integer r with 0  r  n. We assume that
for 1  j  r (J Vj is an antiholomorphic discrete series representation of SL2(kvj)
of half-integral highest weight kj = - (Aj + 7/2)  - 2, and that for r  j  n 03C3vj is
a holomorphic discrete series representation of SL2(kvj) of half-integral lowest
weight kj = Aj + 7/2 7/2 It will be shown in Proposition 4.4 that such cuspidal
representations Q always exist. Let Vaoo be the subspace of smooth functions in
the space va of (J. Since an element f in V03C3~ is rapidly decreasing the following
integral makes sense

Let 0(u, 03C8) be the space of all functions 0398f~ with f ~ V03C3~ and ~ E S(C,,(A». By
[27], Section 5 we know that O(6, 03C8) is non zero, affords an irreducible unitary
representation of HQ(A) and occurs discretely in L2(HQ(k)BHQ(A)). Furthermore,
if (0398(03C3v, 03C8v) denotes the local theta lifting of u, to H Q(kv) then one has

Due to our assumption on 03C3vj we have 0398(03C3vj 03C8vj) = 7r(kj), VjE V~, in the notation
of Section 3. Let Y(Q, 03C8) be the space of functions on G(k)BG(A) obtained by
restricting smooth functions in the space of 0(u, 03C8) to G(A). This defines a non-
zero G(A)-in variant subspace of the space of smooth functions on G(k)BG(A). By
Theorem 2, Section 2 in [38] V(03C3, gi) is a space of smooth cusp forms if for each
function f in V03C3~ its Fourier coefficient with respect to gi given as

is identically zero.
We are going to construct genuine cuspidal automorphic representations 6 of

SL2(A) satisfying this condition.

4.3. SOME GENUINE CUSPIDAL REPRESENTATIONS OF SL2(A). Let q
be a quadratic form on k3, suppose that q is negative definite at the archimedean
places vj, 1  j  r and positive definite at the places vj, r  j  n. Let H/k
denote the isometry group of q. Then (H, SL2) forms a reductive dual pair inside

Sp6 ([13]). Let coq be the corresponding oscillator representation of

SL2(A) x H(A) (with respect to the given choice of 03C8) in the space f(A3) of
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Schwartz-Bruhat functions on A3. For each qJ E S(A3) we put

This series converges, defines a smooth function on SL2(A) which is left

invariant under SL2(k) and slowly increasing.
In order to choose q so that q(03B6) ~ 1 for all 03B6 ~ k3 we proceed as follows. Fix a

finite place Vo of k. Let D be totally positive quaternion algebra over k which is
ramified at v°. Let Do be the space of pure quaternions; we have D = keo ~ D°
where eo is the neutral element. The norm form of D may be written as a2 + p(b)
with a E k, and p a quadratic form on D° ~ k3, b E k3. Choose an element x E k
which is negative at vl, ... , Vn positive at vr+1, ... ,vn and such that lx + 1|vo  1.

Then we have - x = 1- (x + 1) ~ (kvo*)2. Actually, this is only true if Vo is a place
over an odd prime or if |x + 1 |vo is sufficiently smaller than 1; but this is easily
achieved. Putting q : xp as a quadratic form on k3 one now sees that q(03B6) ~ 1
for aIl ç E k3. Indeed, if q(03B6) = 1 for ç E k3, then we have

where S2 = - x, SE kvo’ This contradicts our assumption that D remains a
division algebra at v,,.

Fix a finite place Vo of k. Finally, we choose a function ~ 09, in f(A3) so
that

qJVj’ vj ~ V~ transforms according to the irreducible finite dimensional

representation of SO(3) ~ H(kv) of highest weight Aj+2 with Ai a non-
negative integer. (3)

the function qJvo transforms according to a non-trivial irreducible finite

dimensional representation of H(kvJ. (4)

4.4. PROPOSITION. Let q be a quadratic form on k3, suppose that q is negative
definite at the archimedean places vj, 1  j  r and positive definite at the places
vj, r  j  n, Vj E V~. Assume that q(03B6) ~ 1 for all 03B6 E k3 (cf. 4.3). Then there exists
a Schwartz-Bruhat f ’unction qJ = ~ ~v ~ f(A3) satisfying conditions 4.3(3) and (4)
such that

(1) the function 0. is a cuspidal smooth function on SL2(A), left invariant under
SL2(k), the Fourier coefficients of 0398~, with respect to 03C8 is identically zero,

(2) the local component 0398~,vj, Vj E V~ transforms under SL2(kv) according to the
antiholomorphic discrete series representation of highest weight kj = - (Aj + 7/2)
for 1  j  r resp. to the holomorphic discrete series representation of lowest
weight kj =Aj + 7/2, r  j  n,
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Proof. First of all, note that we have for x E A, and U E A 3

An arbitrary character of kBA is of the form 03C8a, with a e K, where 03C8a is defined by

03C8a(x) = 03C8(ax), x c- A. Then we have, writing n(x) =), by (4)

and we obtain as the 03C8a-Fourier coefficient of 0398~

Taking a = o we find the 03C8o-Fourier coefficient of 0398~ to be 03C9(g)~(0), which is
left invariant under the upper triangular unipotent subgroup of SL2(A). Hence it
has to be identically zero since its local component corresponding under the
local theta lifting to qJvo generates a supercuspidal representation (cf. [37]).

Taking a = 1 we find the tf¡ l-Fourier coefficient to be of the form

By our assumption on q the sum ranges over the empty set. Taking into account
Theorem 2, Section 2 in [38] this shows (1).

Assertion (2) is an immediate consequence of the local theta lifting (cf. [19])
from H(kv) to SL2(kvj), VjE Voo. The representation generated by qJVj corresponds
to the antiholomorphic discrete series representation of highest weight kj,
1  j  r, resp. to the holomorphic discrete series representation of lowest
weight (Aj + 2) + 3/2= kj, r  j  n.

In proving (3) we observe that for ç = ~ ~v no condition is imposed on 9,, v
non-archimedean, v ~ v,,. Using Lemma 6 in [20] we see that there exist

qJ E S(A 3) as required such that 0398~, is non-zero.

4.5. THEOREM. Let k be a totally real algebraic number field of degree
n = [k : Q] with archimedean places v,, . - - , Vn E V.. Let C be a Cayley algebra over
k. Let G be the simple k-group of automorphisms of C. Assume that G is split at the
places v1,..., vn, m  n, and compact at the remaining real places. Given any
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integer r with 0  r  m and an n-tuple (A1 ... , An) of non-negative integers there
exists an irreducible automorphic representation n = ~ 03C0v of G(A) occurring in the
cuspidal spectrum of L2(G(k)BG(A)) such that the representation nv. of G(k,j) is
equivalent to

(see 3.9 for notations).
Proof. Let Q = (8) a v be an irreducible genuine cuspidal representation of

SL2(A) such that 03C3vj, j = 1,..., r, is an antiholomorphic discrete series represen-
tation of SL2(kvj) of highest weight kj = -(Aj + 7/2) resp. 03C3vj, j = r + 1,..., n is a
holomorphic discrete series representation of SL2(kv) of lowest weight
kj = Aj + 7/2 7/2 (see 4.4 for a construction).
Then the restriction V(03C3, gi) of 0(u, 03C8) to G(A) is non-zero and, by 4.4(1) and

4.2, consists out of cusp forms. Its local component 03C0(kj)|G(Kvj) at an archimedean
place is equivalent to A(- (kj + 7/2)) = A(Aj), for j = 1,..., r, by 3.8, to

B(kj - -7f) = B(Aj) for j = r + 1,..., m, by 3.4 and to C(kj-1) = c(A) for

j = m + 1, ... , n by 3.7.
4.6. Let us consider an irreducible genuine cuspidal representation a = ~03C3v of
SL2(A) such that 03C3vj,vj ~ Voo, is the holomorphic representation of SL2(kvj) of
lowest weight -1 and 6 has zero Fourier coefficient with respect to the given non-
trivial character 03C8 of kBA. Observe that such a 6 always exists; it can be

constructed by using the reductive dual pair (0(1), SL2). Using 3.6 one obtains
by means of the global theta lifting from SL2(A) to HQ(A) followed by restriction
the following

PROPOSITION. Let G be a split simple group of type G2 defined over a totally
real algebraic number field k. Then there exist an irreducible cuspidal represen-
tation n = Q 1Cv of G(A) such that its local component nv j at an infinite place vj of k
is the irreducible spherical unitary representation of G(kvj), VjE voo, with in-

finitesimal character xu where Jl denotes the short root of G(kv).
REMARK. In Langlands work (see [23], App. III) the spherical representation
of G2 ~ G(kv) as above is obtained via the residue of an Eisenstein series.

5. Constructing cusp cohomology classes

5.1. COHOMOLOGY OF ARITHMETIC GROUPS. Let G be a simple
algebraic group of type G2 defined over a totally real algebraic number field k of
degree n = [k:Q]. We fix a maximal compact subgroup K~ in the real Lie
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group G 00 := G(R~Qk). Given an open compact subgroup K f c G(Af) we
consider the space

A finite dimensional representation 1:: G x Q Q ~ GL(E) where E is a Q-vector
space provides a sheaf E on X,, in a natural way. The objects we are interested
in are the cohomology groups H*(XK, Ê) for a given choice of an open compact
subgroup K f c G(Af). This is the adelic analogue of the cohomology of an
arithmetic subgroup r of G(k). Recall that the virtual cohomological dimension
vcd(r) of such an arithmetic group r is given as

where 1 = 2 is the k-rank of G, d(G) = n · d(G(kv)), v E V~ and d(G(kv)) = 8 is the
real dimension of the symmetric space associated to G(k"), i.e. of the quotient of
G(kv) by a maximal compact subgroup.
Given another open compact subgroup K’f c K f we have a finite covering

XKj - XKf which induces an inclusion H*(XKf, 1 É) ~ H*(XK’f, E). This is a
directed system of cohomology groups, and the inductive limit

carries a natural G(Af)-module structure. One may recover the cohomology of
XKf by taking K f-invariants.
Denote by g the Lie algebra of G 00; then the cohomology groups H*(X, E)

have an interpretation in terms of relative Lie algebra cohomology as

As usual we denote by po the representation of G(A) acting by right translations
on the space L20(G(k))G(A)) of square integrable cuspidal functions on

G(k)BG(A); it decomposes into a direct Hilbert sum of irreducible admissible
représentations 7r with finite multiplicites mo(03C0), i.e. 03C1o = ~mo(03C0)03C0. Let

L20(G(k)BG(A))~ be the space of C~-vectors (i.e. vectors which are K f-finite for
some K f and COO in the usual sense for the action of G~). Then the natural map
in cohomology induced by inclusion

is injective ([2], 5.5). By definition the cusp cohomology Hcusp*(X, E) with
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coefficients in E is the image of j*, and one has ([6] XIII)

By taking K f-invariants one defines in the same way for a fixed open compact
subgroup K f c G(Af) the cusp cohomology of XKf.

Starting with the discrete spectrum L’(G(k)BG(A», the square-integrable
cohomology, to be denoted by H(2)*(X, E), is defined as the image of j*. By [5],
Section 5 there is a decomposition similar to (6).

Recall that the image of the cohomology with compact supports under the
natural map is called the interior cohomology of X (or XK f) and denoted by
H*(X, E). It contains the cusp cohomology and it is contained in H* E), i.e.
one has

The following theorem is now an immediate consequence of the construction
of specific irreducible automorphic representations 7r = ~03C0v of G(A) occurring
in the cuspidal spectrum of L2(G(k)BG(A) in 4.5 combined with 2.2(4).
5.2. THEOREM. Let k be a totally real algebraic number field of degree
n = [k:QJ with archimedean places v,, ... , Vn E Voo. Let C be a Cayley algebra over
k. Let G be the simple k-group of automorphisms of C. Assume that G is split at all
places vj ~ V~. Then the cusp cohomology H* rP(X, C) does not vanish in degree
4r + 3(n - r) resp. 4r + 5(n - r) for any integer 0  r  n. In terms of relative Lie
algebra cohomology these non-vanishing classes correspond to irreducible unitary
automorphic representations 1t = ~03C0v of G(A) occurring in the cuspidal spectrum
L’(G(k)BG(A» such that the representation 03C0vj of G(kv) is equivalent to A(0) for
j = 1,..., r resp. B(O) for j = r + 1, ... , m. Recall that the representations 03C0vj,
j = 1,..., r, are discrete series representations and that the 03C0vj, j = r + l, ... , n are
non-tempered representations.

Starting off from Theorem 4.5 one obtains an analogous non-vanishing result
for the cohomology in the case of a simple group of type G2 defined over a
totally real algebraic number field k.

Observing that any lattice r in the simple Lie group of type G2 is necessarily
arithmetic [28] we have in particular the following consequence

5.3. PROPOSITION. Given any irreducible lattice r in the simple Lie group of
type G2 there exists a subgroup r’ of r of finite index such that
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REMARKS. (1) In view of 4.5 and 2.2 these non-vanishing results are easily
extended to the case of certain non-trivial coefficients. Observe that in such a

case the complex conjugate contragradient representation Et of EC: has to be
equivalent to the representation Ec (cf. [4], 1.3).

(2) Arthur’s version of the Selberg trace formula allows one to get hold of cusp
cohomology classes in degree 4n by inserting so-called pseudo-coefficients in the
trace formula and computing Euler-Poincaré characteristics. These non-

vanishing classes correspond to irreducible unitary automorphic represen-
tations x = ~03C0v of G(A) occurring in the cuspidal spectrum L2o(G(k)BG(A)) such
that the representation 03C0vj of G(kv) is equivalent to a discrete series represen-
tation (cf. Section 2). Observe that Theorem 4.5 resp. 5.2 with r = n gives a new
proof of this result.

6. Eisenstein cohomology classes

In this and the following section the theory of Eisenstein series will be used to
construct by analytical means certain cohomology classes in H*(X, C) which are
represented by a regular value of a suitable Eisenstein series or a residue of such.
It is not intended to give a complete description of the so-called Eisenstein
cohomology though it is feasible. As our main result we exhibit residual

Eisenstein cohomology classes, say for k = Q in H3(X, C), which correspond to
an irreducible unitary automorphic representation 1t = On, of G(A) occurring
in the residual spectrum L2res(G(Q)BG(A)) such that the representation 03C0~ is

equivalent to Aqi(0).
We have to assume some familiarity with the procedure for the construction

of Eisenstein cohomology classes as initiated by Harder in [10, 11, 12] and
pursued by others [42, 43].

6.1. SOME FACTS ABOUT G2, ROOTS AND PARABOLICS. Let C be the
split Cayley algebra over Q and let G be the split simple Q-group of

automorphisms of C. The set of parabolic Q-subgroups of G is denoted by 9.
We fix a minimal parabolic Q-subgroup Po of G together with a Levi component
Mo of Po defined over Q. Let P be a parabolic Q-subgroup; we may (and will)
assume that P is standard, i.e. we have P =D Po. The unique Levi component of P
containing Mo and defined over Q will be denoted by M = Mp ; the unipotent
radical of P is denoted by N = Np, it is defined over Q. Let A = Ap be the
maximal Q-split torus in the center of Mp. Then the real Lie algebra of Ao
(resp. Ap)
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is a real vector space whose dual is given by

and the complex dual of ap is denoted by a*
Let 03A6(P, AP) be the set of roots of P with respect to Ap ; these are the elements

in X(AP)Q obtained by decomposing the adjoint action of AP on the Lie algebra
np of Np. The set of simple roots of P with respect to AP is denoted by A(P, A).
These elements in X(AP)Q may be canonically embedded in ap . Let

03A6o c X*(Po) c a0* be the set of roots of G with respect to Ao. Fix an ordering on
03A6o compatible with 03A6(Po, Ao), i.e. the set 03A6o+ of positive roots is equal to
03A6(Po, Ao). Let A c 03A6o+ be the set of simple roots. The dual root system is denoted
by (Dô c ao, the root in 03A6ov dual to a given oc c- (Do is denoted by a v.
We want to describe the two standard maximal parabolic subgroups of G. If

al (resp. a2) denotes the short (resp. long) root in A, then we have

A maximal parabolic Q-subgroup Q of G is conjugate to a standard one

given as the semidirect product of the unipotent radical by the centralizer of

HA - i = 1, 2 where we denote HJ = (~a~J ker a)° c Mo for a subset J of A.
Note that the characters of Mo in Ni, i = 1, 2, are exactly the positive roots
which contain at least one simple root not in 0 - {03B1i}. The root spaces of ni
correspond to the roots

The Levi components Mi are isomorphic to GL2.
Observe that the two maximal parabolic subgroups Pi, i = 1, 2, are not

associate.

Let p denote half the sum of the elements in 03A6o+, and we put 03C1Pi := Pla .
6.2. COHOMOLOGY OF A STRATUM. Given a proper parabolic Q-
subgroup P of G we consider the space

defined as the limit over Kf, an open compact subgroup of G(Af). The
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cohomology group H*(X’, E) with the natural sheaf E associated to the

representation (r, E) (cf. 5.1) carries a G(Af)-module structure in a natural way. It
is known that as a G(Af)-module

where H*(XM, H*(n, E)) := limKf H*(XMKf, H*(n, E)) with X’ = M(Q)BM(A)/
K:Kr, KM~ = K~ n M(R), KMf = K f n M(Af). The coefficient sheaf is given by
the Lie algebra cohomology H*(n, E) endowed with the natural M(Q)-module
structure. The inductive limit carries a M(A ¡)-module structure; this is extended
trivially to P(Af) (see [42], 2.7 for a treatment in the non adelic language).
The relative Lie algebra cohomology H*(n, E) is described as an M(Q)-

module by a theorem of Kostant (cf. [21], 5.13). Let W (resp. WM) be the Weyl
group of G Xc Q (resp. M xQ Q). The group W is generated by the simple
reflections Wi associated to a,, and W is isomorphic to ( ± 1) S3.
We recall that we have

Then the set Wpi = {W ~Wlw-1(0394Mi) ~ 03A6+ is a set of representatives in the
Weyl group W relative to WM; in a given coset the element of minimal length is
taken. Given the irreducible representation (r, E) of G x o Q of highest weight
the Lie algebra cohomology H*(ni, E) decomposes as an Mi x eQ-module

into irreducible Mi x Q li-modules F Jlw with highest weight Jlw = w(À + p) - p.
The sum ranges over all w ~ Wpi with length l(w) = q. Note that the weights Jlw
are all dominant and distinct, as w ranges through WPi. One easily checks

where w,, denotes the unique element of length 5 in W’i.
For later use we have to determine in the case 03BB, = 0 the parameter

where w ranges through the set Wp. The following list gives the parameter in the
form Aw = ? ’ pp, , column 1 resp. Il contains the values for w ~ WP1 resp. WP2. It
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is convenient to identify S~C with S03C1P where p p is defined by
03C1Pi:~03C1Pi, 03B1i~-1. ppi. We have PPl = 2/503C1P1 and P2 = 2/303C1P2. The complex values
Sw defined by Aw = swPP are given as well. The rows are indexed by the length
l(w) of w ~ W.

6.3. The construction of Eisenstein cohomology classes (up to the actual

existence of a pole) in the case of groups of Q-rank 1 is dealt with in [10]. The
main results obtained there carry over to our case in question where we deal
with parabolic 0-subgroups P of parabolic Q-rank 1. Taking into account a
more representation theoretical approach (instead of the more differential-
geometric one there) the result may be reformulated in the following way:
For the cusp cohomology

one has (5.1(6) and 6.2(4)) a decomposition as a direct sum

where the second sum ranges over all irreducible cuspidal automorphic
representations 03C0 of M(A) with non-trivial cohomology with respect to the fixed
module F,_ c H*(n, E) i.e. H03C0 occurs as an M(A)-submodule with multiplicity
mo(7r) in the space LÕ(M(Q)BM(A)) and H*(m, KM~, 03C0~ (8) F03BCw) ~ 03C0f does not
vanish. A cohomology class in Husp*(XM, H*(n, E)) is said to be of type (x, w) if it
is an element of the summand H*(m, KMoo; noo Q F03BCw) Q 03C0f in the decom-

position (1). Given such a cohomology class of type (03C0, w) there is via the

Eisenstein summation depending on a parameter A E (at)c with

(Re A, a) &#x3E; (pp, a) for each simple root of P with respect to A an intertwining
operator
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of G(A)-modules into the space of automorphic forms on G(A). It can be

analytically continued as a meromorphic function in A to all of (a*P)C. We refer
to 7.1 for a detailed treatment. In order to construct cohomology classes in
H*(X, E) one has to analyze the map (2) on the level of (g, K~)-cohomology. By
[42], 4.11 one has the following result.

6.4. PROPOSITION. Let [~] e Hcusp*(XP, E) be a cohomology class of type (n, w),
w E WP, 7c an irreducible cuspidal representation q/’M(A). If the Eisenstein series
assigned to 7r as in 6.3(2) is holomorphic at the point Aw= -w(03BB+03C1)|aP (which is
real and uniquely determined by the datum (7r, w)) then evaluation at Aw provides a
non-trivial class Eis[~] in H*(X, E), called a regular Eisenstein cohomology class.

REMARK. Recall that the image of the class Eis[~] under restriction to the
cohomology H*(XQ, E), Q a proper parabolic Q-subgroup of G, is obtained by
taking the constant Fourier coefficient of the Eisenstein series in question along
Q(cf. [42], 1.10 resp. 4.7).

6.5. Given a proper parabolic Q-subgroup P of G we consider the set Wp. Let WH
denote the longest element of WH for H = G resp. M then w - w’ : = WM. W. WG
defines an involution on WP. One has l(w) + l(w’) = dim N. Then it is easily seen
by a direct computation in the case considered here that the weights Jlw

occurring in the decomposition of H*(n, C) satisfy the identity:

The irreducible °M xQ Q-module F Jlw’ is the representation contragradient to
F03BCw (2)

(Of course, this is a result proved in general in [45]).
Then the cusp cohomology H*cusp(XP, E) may be arranged according to

isotypical components of the M(A)-modules and regrouped by pairs (w, w’),
w E WP with l(w) &#x3E; (1/2) dim N. We observe that dim N = 5, and we may write

where H*(03C0, F03BCw) denotes the induced module

indexed by an irreducible cuspidal automorphic representation 03C0 of M(A) with
non-trivial cohomology with respect to the fixed module F03BCw. The represen-
tation 03C0’ of M(A) is obtained by twisting 03C0 with the opposition involution on
Wp. Note that for w E Wp with l(w) &#x3E; (2) dim N the complex values Sw defined by
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Aw = s,,,, - 6P are positive real numbers (cf. Tables 6.2 and 6.4).
The main result in [10] has the following reformulation in this setting

6.6. THEOREM. Let P be a maximal parabolic 0-subgroup of G.

(1) The image of the natural restriction map

is compatible with the direct sum decomposition on the right-hand side, i.e.

We denote by I(n, w) resp. J(n’, w’) the summand lm rp ~ H*(03C0, F03BCw) resp.

lm r p n H*(n’, F03BCw,) in the last sum decomposition.
(2) There are subspaces Eis(I(03C0, w)) resp. Eis(J(03C0’, w’)) in H*(X, C) which restrict

isomorphically under rp onto I(03C0, w) resp. J(03C0’, w’). In the first case one considers
the map Eis induced by 6.3(2) on the level of (g, K~)-cohomology, and (using 6.4)
Eis(I(n, w)) is generated by regular Eisenstein cohomology classes and always non-
trivial. In the second case Eis(J(n’, w’)) is generated by residual Eisenstein

cohomology classes obtained by considering the composition of Eis and taking the
residue at Aw. If the subspace Eis(J(n’, w’)) is non-trivial then it consists out of
square integrable cohomology classes.

REMARK. This is a result up to the actual existence of a pole at Aw for the
Eisenstein series attached to the datum (03C0, w) (cf. 6.4). Thus the main task in
constructing (residual) Eisenstein cohomology classes is to discuss this problem.

7. Residual Eisenstein cohomology classes

In this section we give a description of the image of the restriction

rp: H*(X, C) ~ Hcusp*(XP, C); in particular, it will be discussed under which

conditions the subspaces Eis(J(03C0’, w’)) c H*(X, C) generated by residual

Eisenstein cohomology classes are non-trivial. This is formulated in terms of a
non-vanishing condition for certain partial L-series of GL2.
We retain the notation of Section 6.

7.1. Let P be a standard maximal parabolic 0-subgroup of G; there is a Levi
decomposition P = MN as in 6.1. For each place v ofQ let Gv = G(Qv)’ Similarly,
we use P v’ M v’ N v etc. to denote the corresponding groups of 0,-rational points.
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For each place v there is a natural imbedding X (M)Q~ X(M)ov’ and it induces
an imbedding

the image is denoted by the same letter. For XE X(M)(h m = (mv)v E M(A) we
define x(m) = nvev |x(mv)|v The product on the right-hand side is finite since
mv E G(Ov) for almost all v. We may extend this to P(A) by putting

Let pp E a* be half the sum of the roots of P in N. If a identifies the unique
(reduced) root of AP in N, we let P = ~ 03C1P, 03B1 ~-1 03C1P; it belongs to a*. We shall
now identify C with a subspace of at by identifying S~C with SP E at. Then
SEC can also be realized as an element in (av)*C for each v ~ V via a* ~ ag. For a
given A in a*P,C of the form SP we may write

We shall extend A to G(A) by making it trivial on N(A) and K = II Kv where
Kv = G«9,) when G is unramified over a place v and otherwise K, is a special
maximal compact subgroup Kv c Gv.

Let 03C0 = ~03C0v be a cuspidal automorphic representation on M(A). Given a K-
finite function ç in the space of 03C0 there is an associated. Eisenstein series defined

by

where CPA(g) = ~(g)gA+03C1P, g ~ G(A).
For a given A with Re(A) ~ 03C1P + (aP*)+ the series converges absolutely; it

defines a C°°-function on G(A)x{A~a*P,C|Re(A)~03C1p+(a*P)+} which is holo-

morphic in A. The function E((~,A,g) can be analytically continued as a
meromorphic function in A to aP,C* The Eisenstein series has only a finite
number of simple poles in the real interval

and all other possible poles of E(~, A, g) lie in the region {A e a*P,C|1 Re(A)( a V)  0

for all 03B1~0394(P, A)}.
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For a given A E a*,c let IP,03C0,A be the induced representation

acted upon by G(A) via right translations. Having written the representation 03C0

as a restricted tensor product 03C0 = ~03C0v, of irreducible representation (nv, H,) of
G, the induced representation is the restricted tensor product of the local
induced representation.
Given an element w in the Weyl group W of (G, Ao) we fix a representative

denoted by the same letter in the intersection of G(Q) and the normalizer of Ao;
this element is determined up to Mo(Q). If P, Q are two parabolic Q-subgroups
of G, let W(Ap, AQ) be the set of distinct isomorphisms from ap to aQ obtained by
restricting elements in W to ap. If W(Ap, AQ) is not empty the parabolic Q-
subgroups P and Q are called to be associate. This defines an equivalence
relation on the set of parabolic Q-subgroups of G.

Recall that for a given t ~ W(AQ, Ap) there is a uniquely determined element wt
in W such that t is obtained by restricting wt to ap and such that wt 1 a is a root of
Po with respect to Ao for every simple root a of (MP n Po, Ao). Thus, W(Ap, AQ)
may be regarded as a subset of W; note that w, is an element in G(Q) for a given t
in W(Ap, AQ).

Let Q be a parabolic Q-subgroup of G, associate to the given maximal
parabolic 0-subgroup P; we may assume that also Q is a standard parabolic Q-
subgroup. Let t be an element in W(Ap, AQ) and let w, be a representative in W
chosen as above. There are global intertwining operators

defined for a given ç as above and A E a*P,C with Re(A) E p p + (ap) + by

This integral converges absolutely in that region; it can be continued as a

meromorphic function in A to a*P,C. For A with Re(A)(a ’) &#x3E; 0 for all a E A(P, Ap)
there is only a finite number of simple poles, all on the real axis. There are the
local intertwining operators A(A, 03C0v, t), v~V, defined in an analogous way, and
one has for the given cuspidal automorphic representation 03C0 = ~03C0v of M(A)
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The properties of M(A, ’Tt, t) that we will need are all contained, at least

implicitly, in [23]; a more recent treatment is given in [31].

7.2. For every connected algebraic group H defined over Q we denote by LH its
L-group. It is the semidirect product of a complex group LH° and the Weil group
W(Q/Q). For every place v of Q let LHv denote the L-group of H viewed as a Q-
group. There is a natural homomorphism LH, _+ LH. Note that in the case of the
Levi component M ~ GL2 of P one has LM, = GL2(C). Using the map
’1v: LM v -+ LM alluded to one attaches to a given finite dimensional complex
representation r of LM the representation rv = r o ~v, of LMv.
Given a place v of Q such that 03C0v (cf. 7.1) and G, are both unramified there is

the local Langlands L-function L(s, 7r,, rU) attached to 03C0v and rv; for a definition

we refer to [3], [24]. If S n S~ is a finite set of places of Q such that for every
v ft S the representation 03C0v and the group G v are both unramified then there is the
partial L-function

Fix the maximal parabolic Q-subgroup P of type i, let ’N be the unipotent
radical of LP; its Lie algebra is denoted by Ltt. The group LM acts on Lu by the
adjoint action. If fi’ ranges through the set of dual roots f3 v , 03B2~03A60+, for which
X p v C Ln holds then the numbers Pi, 03B2&#x3E; take a string of integers from 1 to a
positive integer m. For a given j, 1  j  m, we define

Then the adjoint action of LM on Ltt leaves Vj for each j stable. The restriction of
this action of LM to V is denoted by rj, the contragradient representation is
denoted by îj 

Let P- = MN - be the maximal parabolic Q-subgroup opposite to the given
one P. Then it is shown in [24] that in the case Q = P - the value of the
intertwining operator M(A, 03C0, t) with A = spp on a function f = (Df, with fv, the
unique Kv-fixed function normalized by fv(e") = 1 for each v ~ S, and is the K,-
fixed function in the space of IQ,w03C0v, _A is given by the expression on the right-
hand side

In the two cases at hand the term of ratios of partial L-series may be described
in more detail in the following way. Let p, denote the 2-dimensional standard
representation of GL,(C), then A203C12 is the 1-dimensional representation of
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GL2(C) given by the central character co. Next we need the 4-dimensional

representation r3, called the adjoint cube, and defined by r3 = S303C12 @ (A203C12)-1
where Sk P2 denotes the kth symmetric power representation of p2. Then we
have:

The adjoint action of LM1 ~ GL2(C) on Lnl is given as ro3 ~ A203C12 = r1 ~r2

(4)

The adjoint action of LM2 ~ GL2(C) on Ltt2 is given as

This is achieved by a computation carried through e.g. in [24]; see also [48],
p. 268 resp. [49], Section 6.

7.3. The poles of the Eisenstein series assigned to a cohomology class

[ç] ~H*cusp(XP, E) of type (03C0, w), w ~ WP, rc an irreducible cuspidal representation
of M(A), as in Section 6 are determined by the poles of the intertwining operator
M(s, 03C0, t), t the non-trivial element in W (AP, AP) as defined in 7.2. Depending on
the type of [~] we have to study the analytic behaviour at the point
AW = 2013w(03BB+03C1)|aP. In view of 6.4-6.6 we may restrict ourselves to cohomology
classes of type (n, w), with l (w) &#x3E; 2 dim N. For simplicity we assume E ~ C (or
equivalently, 03BB, = 0); compare Remarks 7.7 for the general case.

Since the given irreducible cuspidal representation (03C0, H,) of M(A) ~ GL2(A)
has non-trivial cohomology with respect to the fixed module F/lw c Hl(w)(n, C),
w E W P, l (w) &#x3E; 1/2 dim N, its infinite component 03C0~ is a discrete series represen-
tation. The Ramanujan conjecture as proved by Deligne [7] (see [40] for a
group representation theoretical formulation) then asserts that each local

component nv of 03C0 is a tempered representation of M,. In such a case Theorems
5.3, 5.4 in [46] imply that the local intertwining operator A(S, 03C0v, t) is

holomorphic for Re(s) &#x3E; 0. For a given SEC with Re(s) &#x3E; 0 one knows that

there is a function fv such that A(s, 1Cv, t) fv is non-zero (see e.g. [50], Prop. 3. l,
p. 332).
Now we choose a finite set S of places of Q such that S contains the set S~ of

archimedean places and such that for every v ft S the representation 03C0v and G v are
both unramified. If the Eisenstein series assigned to [~] of type (1C, w) as above
has a pole at the point Aw= 2013w(03BB+03C1)|aP then the ratio of partial Irseries

has a pole at s = sw (cf. the list in 6.2).
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7.4. PROPOSITION. Given a maximal parabolic 0-subgroup P of G let

[~] ~ H*cusp(XP, C) be a cohomology class of type (03C0, w), w E Wp, l(w) = 5, 4, 03C0 an
irreducible cuspidal representation of M(A). Then the associated Eisenstein series
is holomorphic at Aw = -w(p)lap’ and evaluation at Aw provides a regular
Eisenstein cohomology class Eis[~] in H1(w) + 1(X, E).

Proof. First we consider the case of a maximal parabolic 0-subgroup of type
P2; we may assume P = P2. Taking into account 7.2(5) we have to analyze the
analytic behaviour of

at s = 3/2 for w with l (w) = 5 and s = 1 for w with l (w) = 4.
Recall that Ls(s, 1t, 2) converges absolutely for Re(s) &#x3E; 1 (cf. e.g. [17]).

Moreover, LS(s, 03C0, 2) is non-zero [18] for Re(s)  1, and the fact that LS(S, 03C0, p2)
is holomorphic for Re(s) = 1 is proved in [9]. Together with the known analytic
properties of the partial L-series LS(S, 03C0, ) (see [53]) these facts imply that the
ratio of partial L-series in (1) does not have a pole at s = 3/2 and s = 1

respectively. In view of the arguments given in 7.3 it follows that the Eisenstein
series attached to [~] of type (1t, w) does not have a pole at Aw = - w(03C1)laP. The
final assertion is provided by 6.4.

In the case of a maximal parabolic Q-subgroup of type Pi we have to analyze,
following 7.2(4), the analytic behaviour of

at s = 5/2 for w with 1 (w) = 5 and s = 2 for w with l(w) = 4.
Observe Ls(s, 11:, î’) is absolutely convergent in the half-plane Re(s) &#x3E; 1; in

particular, the function Ls(s, 11:, 7’) does not vanish for Re(s) &#x3E; 1 (cf. [17],
Theorem 5.3). Again, this implies that the ratio of partial L-series in (2) does not
have a pole at s = 5/2 and s = 2 respectively. As above, this proves the claim.

7.5. PROPOSITION. Given a maximal parabolic 0-subgroup P of G let

[~] ~ H4cusp(XP, C) be a cohomology class of type (n, w), w ~ Wp, l(w) = 3, 03C0 an

irreducible cuspidal representation of M(A). I n order that the associated

Eisenstein series does have a pole at Aw = - w(p )Iap it is necessary that the central
character OJ of 7r is trivial and that the partial L-series Ls(s, 03C0, 2) in case P is of
type 2 resp. Ls(s, 03C0, îo) in case P is of type 1 (with S large enough) does not vanish at
s = 1/2. In turn if this is not the case there is a regular Eisenstein cohomology class
Eis[~] in H4(X, C).
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Proof. In analyzing the analytic behaviour of 7.4(1) resp. (2) at s = 1/2 (cf. the
list in 6.2 for this value) one sees that the term

does have a pole at s = 1/2 if and only if w is trivial. In both cases of maximal
parabolic Q-subgroups of G to be considered this pole can be possibly
compensated for by a zero of the first L factor in 7.4(1) resp. (2). Observe that the
third L-factor in 7.4(1) does not have pole at s = 1/2. By the arguments given in
7.3 it follows that the non-vanishing condition as stated together with the
condition that the central character OJ of 03C0 is trivial are necessary ones in order

to have a pole.

7.6. COROLLARY. Let P be a maximal parabolic 0-subgroup of G, and let
rp: H*(X, C) - H*(Xp, C) be the natural restriction map (cf. 6.5, 6.6 for notation).

(1) Then the spaces H*(03C0, FJlw) c H*cusp(XP, C) indexed by an irreducible cuspidal
automorphic representation 7r of M(A) ~ GL2(A) with non-trivial cohomology
with respect to the fixed module F03BCw, w E WP, l(w) = 5, 4, are in the image ofrg,
i.e. one has I(03C0, w) = H*(03C0, FJlw) and J(03C0’, w’) = {0} in this case. The corre-

sponding subspaces

are generated by regular Eisenstein cohomology classes.
(2) Let n be an irreducible cuspidal automorphic representation of

M(A) ~ GL2(A) with non-trivial cohomology with respect to the fixed module

Fuw,, w ~ W’, l(w) = 3. In order that I(n, w) ~ H*(n, F03BCw) and J(n’, w’) ~ {0}, it
is necessary

(a) in case P is of type 1 that the central character co of 03C0 is trivial and that the
partial L-series Ls(s, n, 7’), rg the 4-dimensional adjoint cube represen-
tation of GL2(C), does not vanish at s = 1/2

(b) in case P is of type 2 Ls(s, 7U, P2), P2 the 2-dimensional standard represen-
tation of GL2(C), (with S large enough) does not vanish at s = 1/2.

The corresponding subspaces

resp.
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are generated by regular Eisenstein cohomology classes in the, first case and by
residual ones in the second.

7.7. REMARKS. (1) Observe that it may very well happen that the partial L-
series Ls(s, 03C0, p2) vanishes at s = 1/2. Numerical examples may be given.
Following a remark of D. Rohrlich it is very likely, that examples for the
vanishing of Ls(s, 03C0, 7’) at s = 1/2 may be constructed as well. This deserves
further study.

(2) The condition given in 7.6(2) is not sufficient to ensure that J(03C0’, w’) is non-
trivial. It may very well happen that the pole of the ratio of partial L-series in
7.4(1) resp. (2) is compensated for by a zero of one of the local intertwining
operators A(s, nv, t) with v E S. Recall that for these operators there exists a
function fv for which A(s, 03C0v, t) fv is non-zero. Thus, a suitable choice of the

components at these places provides a residual Eisenstein cohomology class i.e.
J(03C0’, w’) ~ (0). However, this discussion leads to a careful study of the reduci-
bility of local representations at places v E S and the local intertwining operators
alluded to.

(3) The non-vanishing cohomology classes in Eis(J(03C0’, w’)) c H3(X, C) are
square-integrable and correspond to irreducible unitary automorphic represen-
tations i = Qi" of G(A) occurring in the discrete spectrum L2(G(Q)BG(AB)) such
that the representation 03C0~ is equivalent to Aq1(0) in the case P is of type 2 and to
Aq2(0) in the case P is of type 1. This follows from the fact that Aq(0) is the
Langlands quotient of the principal series representation IndP(R),03B4,03BB with ô = n,,,,
and A = Aw as given in 6.2, i.e. Aw = 1/503C1P1 and Aw = 1/303C1P2 respectively.

(4) If the highest weight of the given representation (i, E) of G xQQ is regular
then there are no residual Eisenstein cohomology classes contributing to

H*(X, E). The remaining cases can be dealt with as above taking into account a
shift in the parameter s to the right.
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