Generalization of the Moore exact sequence and the wild kernel for higher K-groups
Compositio Mathematica, Tome 86 (1993) no. 3, pp. 281-305.
@article{CM_1993__86_3_281_0,
     author = {Banaszak, Grzegorz},
     title = {Generalization of the {Moore} exact sequence and the wild kernel for higher $K$-groups},
     journal = {Compositio Mathematica},
     pages = {281--305},
     publisher = {Kluwer Academic Publishers},
     volume = {86},
     number = {3},
     year = {1993},
     mrnumber = {1219629},
     zbl = {0778.11066},
     language = {en},
     url = {http://www.numdam.org/item/CM_1993__86_3_281_0/}
}
TY  - JOUR
AU  - Banaszak, Grzegorz
TI  - Generalization of the Moore exact sequence and the wild kernel for higher $K$-groups
JO  - Compositio Mathematica
PY  - 1993
SP  - 281
EP  - 305
VL  - 86
IS  - 3
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1993__86_3_281_0/
LA  - en
ID  - CM_1993__86_3_281_0
ER  - 
%0 Journal Article
%A Banaszak, Grzegorz
%T Generalization of the Moore exact sequence and the wild kernel for higher $K$-groups
%J Compositio Mathematica
%D 1993
%P 281-305
%V 86
%N 3
%I Kluwer Academic Publishers
%U http://www.numdam.org/item/CM_1993__86_3_281_0/
%G en
%F CM_1993__86_3_281_0
Banaszak, Grzegorz. Generalization of the Moore exact sequence and the wild kernel for higher $K$-groups. Compositio Mathematica, Tome 86 (1993) no. 3, pp. 281-305. http://www.numdam.org/item/CM_1993__86_3_281_0/

[B] Banaszak, G.: Algebraic K-theory of number fields and rings of integers and the Stickelberger ideal, Annals of Math. 135 (1992), 325-360. | MR | Zbl

[C] Coates, J.: p-adic L-functions and Iwasawa theory, in Algebraic Number Fields (Durham Symposium, 1975, ed. by A. Fröhlich), p. 269-353. Academic Press: London, 1977. | MR | Zbl

[C-L] Coates, J., Lichtenbaum, S.: On l-adic zeta functions, Annals of Math. 98 (1973), 498-550. | MR | Zbl

[C-S] Coates, J., Sinnott, W.: An analogue of Stickelberger's theorem for higher K-groups, Invent. Math. 24 (1974), 149-161. | MR | Zbl

[D-F] Dwyer, W., Friedlander, E.: Algebraic and étale K-theory, Transaction of the American Mathematical Society, v. 292, n. 1 (1985), 247-280. | MR | Zbl

[J] Jannsen, U.: Continuous étale cohomology, Math. Annalen 280 (1988), 207-245. | MR | Zbl

[K] Kurihara, M.: Some remarks on conjectures about cyclotomic fields and K-groups of Z, Compositio Mathematica 81 (1992), 223-236. | Numdam | MR | Zbl

[L] Lichtenbaum, S.: On the values of zeta and L-functions. I. Annals of Math. 96 (1972), 338-360. | MR | Zbl

[Mil] Milnor, J.: Introduction to Algebraic K-theory, Princeton University Press, 1971. | MR | Zbl

[Q1] Quillen, D.: Higher algebraic K-theory. I, Lecture notes in mathematics 341. | MR | Zbl

[Q2] Quillen, D.: On the cohomology and K-theory of the general linear groups over a finite field, Ann. of Math. 96 (1972), 552-586. | MR | Zbl

[Sch] Schneider, P.: Über gewisse Galoiscohomologiegruppen, Mathematische Zeitschrift 168 (1979), 181-205. | MR | Zbl

[S1] Soulé, C.: K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), 251-295. | MR | Zbl

[S2] Soulé, C.: On higher p-adic regulators, algebraic K-theory, Lecture notes in mathematics 854, Springer, New York, 1981, pp. 372-401. | MR | Zbl

[T] Tate, J.: Relations between K2 and Galois cohomology, Invent. Math. 36 (1976), 257-274. | MR | Zbl