On the unitary dual of the classical Lie groups II. Representations of SO(n,m) inside the dominant Weyl Chamber
Compositio Mathematica, Tome 86 (1993) no. 2, pp. 127-146.
@article{CM_1993__86_2_127_0,
     author = {Salamanca-Riba, Susana A.},
     title = {On the unitary dual of the classical {Lie} groups {II.} {Representations} of $SO(n, m)$ inside the dominant {Weyl} {Chamber}},
     journal = {Compositio Mathematica},
     pages = {127--146},
     publisher = {Kluwer Academic Publishers},
     volume = {86},
     number = {2},
     year = {1993},
     mrnumber = {1214453},
     zbl = {0782.22010},
     language = {en},
     url = {http://www.numdam.org/item/CM_1993__86_2_127_0/}
}
TY  - JOUR
AU  - Salamanca-Riba, Susana A.
TI  - On the unitary dual of the classical Lie groups II. Representations of $SO(n, m)$ inside the dominant Weyl Chamber
JO  - Compositio Mathematica
PY  - 1993
SP  - 127
EP  - 146
VL  - 86
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1993__86_2_127_0/
LA  - en
ID  - CM_1993__86_2_127_0
ER  - 
%0 Journal Article
%A Salamanca-Riba, Susana A.
%T On the unitary dual of the classical Lie groups II. Representations of $SO(n, m)$ inside the dominant Weyl Chamber
%J Compositio Mathematica
%D 1993
%P 127-146
%V 86
%N 2
%I Kluwer Academic Publishers
%U http://www.numdam.org/item/CM_1993__86_2_127_0/
%G en
%F CM_1993__86_2_127_0
Salamanca-Riba, Susana A. On the unitary dual of the classical Lie groups II. Representations of $SO(n, m)$ inside the dominant Weyl Chamber. Compositio Mathematica, Tome 86 (1993) no. 2, pp. 127-146. http://www.numdam.org/item/CM_1993__86_2_127_0/

[1] A. Borel and N. Wallach: Continuous cohomology, discrete subgroups and representations of reductive subgroups, in Annals of Mathematics Studies Vol. 94, Princeton University Press, 1980. | MR | Zbl

[2] S. Salamanca-Riba: On the unitary dual of some classical Lie groups, Compositio Math. 68 (1988), 251-303. | Numdam | MR | Zbl

[3] B. Speh and D. Vogan: Reducibility of generalized principal series representations, Acta Math. 145 (1980), 227-229. | MR | Zbl

[4] D. Vogan: Representations of Real Reductive Lie Groups, Birkhäuser, Boston-Basel- Stuttgart, 1981. | MR | Zbl

[5] D. Vogan: Unitarizability of certain series of representations, Annals Math. 120 (1984),141-187. | MR | Zbl

[6] G. Zuckerman: On Construction of Representations by Derived Functors. Handwritten notes, 1977.