@article{CM_1993__86_2_127_0, author = {Salamanca-Riba, Susana A.}, title = {On the unitary dual of the classical {Lie} groups {II.} {Representations} of $SO(n, m)$ inside the dominant {Weyl} {Chamber}}, journal = {Compositio Mathematica}, pages = {127--146}, publisher = {Kluwer Academic Publishers}, volume = {86}, number = {2}, year = {1993}, mrnumber = {1214453}, zbl = {0782.22010}, language = {en}, url = {http://www.numdam.org/item/CM_1993__86_2_127_0/} }
TY - JOUR AU - Salamanca-Riba, Susana A. TI - On the unitary dual of the classical Lie groups II. Representations of $SO(n, m)$ inside the dominant Weyl Chamber JO - Compositio Mathematica PY - 1993 SP - 127 EP - 146 VL - 86 IS - 2 PB - Kluwer Academic Publishers UR - http://www.numdam.org/item/CM_1993__86_2_127_0/ LA - en ID - CM_1993__86_2_127_0 ER -
%0 Journal Article %A Salamanca-Riba, Susana A. %T On the unitary dual of the classical Lie groups II. Representations of $SO(n, m)$ inside the dominant Weyl Chamber %J Compositio Mathematica %D 1993 %P 127-146 %V 86 %N 2 %I Kluwer Academic Publishers %U http://www.numdam.org/item/CM_1993__86_2_127_0/ %G en %F CM_1993__86_2_127_0
Salamanca-Riba, Susana A. On the unitary dual of the classical Lie groups II. Representations of $SO(n, m)$ inside the dominant Weyl Chamber. Compositio Mathematica, Tome 86 (1993) no. 2, pp. 127-146. http://www.numdam.org/item/CM_1993__86_2_127_0/
[1] Continuous cohomology, discrete subgroups and representations of reductive subgroups, in Annals of Mathematics Studies Vol. 94, Princeton University Press, 1980. | MR | Zbl
and :[2] On the unitary dual of some classical Lie groups, Compositio Math. 68 (1988), 251-303. | Numdam | MR | Zbl
:[3] Reducibility of generalized principal series representations, Acta Math. 145 (1980), 227-229. | MR | Zbl
and :[4] Representations of Real Reductive Lie Groups, Birkhäuser, Boston-Basel- Stuttgart, 1981. | MR | Zbl
:[5] Unitarizability of certain series of representations, Annals Math. 120 (1984),141-187. | MR | Zbl
:[6] On Construction of Representations by Derived Functors. Handwritten notes, 1977.
: