Compositio Mathematica

D. BÄTtig
B. GRÉBERT
J. C. Guillot
T. KAPPELER
Foliation of phase space for the cubic nonlinear Schrödinger equation

Compositio Mathematica, tome 85, $\mathrm{n}^{\circ} 2$ (1993), p. 163-199
http://www.numdam.org/item?id=CM_1993_85_2_163_0
© Foundation Compositio Mathematica, 1993, tous droits réservés.
L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Foliation of phase space for the cubic non-linear Schrödinger equation

D. BÄTTIG* $\dagger \dagger$, B. GRÉBERT*(1), J. C. GUILLOT* and T. KAPPELER** \dagger
*Départment de Mathématiques URA 742, CNRS, Université Paris-Nord, 93430 Villetaneuse, France
**Department of Mathematics, Ohio State University, Columbus, Ohio 43210-1174, U.S.A.
${ }^{(1)}$ Current address: Instituto de Investigaciones en Matematicas Aplicades y en Sistemas, Universidad Nacional Autónoma de Mexico, Apartado Postal 20-726, Mexico D.F., 0100

Received 25 September 1991; accepted 15 November 1991

1. Introduction and theorems

Consider the defocussing cubic non-linear Schrödinger equation (NLS)

$$
i \frac{\partial \psi}{\partial t}(x, t)=-\frac{\partial^{2} \psi}{\partial x^{2}}(x, t)+2|\psi(x, t)|^{2} \psi(x, t)
$$

for complex valued function ψ with periodic boundary conditions $\psi(x+1, t)=\psi(x, t)$. It is well known that (NLS) is a completely integrable infinite dimensional Hamiltonian system. The periodic eigenvalues of the corresponding self-adjoint $A K N S$-system are invariant under the flow of (NLS), where the $A K N S$-system is given by

$$
(H(p, q) F)(x)=\left[\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) \frac{\mathrm{d}}{\mathrm{~d} x}+\left(\begin{array}{rr}
-q(x, t) & p(x, t) \\
p(x, t) & q(x, t)
\end{array}\right)\right] F(x)
$$

with $\psi(x, t)=p(x, t)-i q(x, t)$. Define for $N \in \mathbb{N}$

$$
\begin{aligned}
\mathscr{H}^{N}= & \left\{(p, q) \in H_{\mathbb{R}}^{N}([0,1])^{2} / p^{(j)}(0)=p^{(j)}(1), q^{(j)}(0)=q^{(j)}(1)\right. \text { for } \\
& j=0, \ldots, N-1\} .
\end{aligned}
$$

For $N \geqslant 1$ the Liouville tori of (NLS) in the phase space \mathscr{H}^{N} are the isospectral sets

$$
\begin{aligned}
\operatorname{Iso}_{N}(p, q)= & \left\{(\tilde{p}, \tilde{q}) \in \mathscr{H}^{N} / H(\tilde{p}, \tilde{q})\right. \text { has the same periodic } \\
& \text { spectrum as } H(p, q)\} .
\end{aligned}
$$

[^0]$\dagger \dagger$ Supported by Swiss National Fund.

For every $N, \operatorname{Iso}_{N}(p, q)$ is compact, connected and generically an infinite product of circles.

For $(p, q) \in \mathscr{H}^{N}(N=0,1)$ let $\left\{\lambda_{k}(p, q)\right\}_{k \in \mathbb{Z}}$ be the periodic and antiperiodic spectrum of $H(p, q)$. One knows that the gap length map γ from \mathscr{H}^{1} into l_{N}^{2} defined as

$$
(p, q) \xrightarrow{\gamma}\left(\gamma_{k}(p, q)=\lambda_{2 k}(p, q)-\lambda_{2 k-1}(p, q)\right)_{k \in \mathbb{Z}}
$$

is continuous (but not analytic), onto and $\gamma^{-1}(\gamma(p, q))=\operatorname{Iso}_{1}(p, q)$, where $l_{N}^{2}=\left\{\left(a_{k}\right)_{k \in \mathbb{Z}} / \sum_{k \in \mathbb{Z}} k^{2 N}\left|a_{k}\right|^{2}<\infty\right\}(N \geqslant 0)$. (see [Gre-Gui]).

In Appendix A we prove
THEOREM 1.1. (1) The gap-length map $\gamma: \mathscr{H}^{0} \rightarrow l^{2}$ is continuous and

$$
\gamma^{-1}(\gamma(p, q))=\operatorname{Iso}_{0}(p, q)
$$

(2) $\|(p, q)\|_{\mathscr{H}^{0}}$ is a spectral invariant, i.e. constant on $\operatorname{Iso}_{0}(p, q)$.

Knowing the Dirichlet-spectrum $\left\{\mu_{k}(t)\right\}_{k \in \mathbb{Z}}$ of the operator $H\left(T_{t} p, T_{t} q\right)$, where $\left(T_{t} f\right)(x)=f(x+t)$ one can reconstruct p and q by the trace formulas

$$
\begin{aligned}
& p(t)=-\sum_{k \in \mathbb{Z}} \frac{1}{2}\left(\lambda_{2 k}+\lambda_{2 k-1}\right)-\tilde{\mu}_{k}(t) \\
& q(t)=\sum_{k \in \mathbb{Z}} \frac{1}{2}\left(\lambda_{2 k}+\lambda_{2 k-1}\right)-\mu_{k}(t)
\end{aligned}
$$

Here $\left\{\tilde{\mu}_{k}(t)\right\}_{k \in \mathbb{Z}}$ is the Dirichlet-spectrum of $H\left(T_{t} q,-T_{t} p\right)$. The dependence of t of $\left\{\mu_{k}(t)\right\}_{k \in \mathbb{Z}}$ is given (see [Gre-Gui]) by a system of singular differential equations. For finite gap potentials $\mu_{k}(t)$ can be explicitly calculated by geometric methods (see [Pre]). In this article we compute the image of $\mu_{k}(\cdot)$, or equivalently the image of the flow by translation T_{t} on $\operatorname{Iso}(p, q)$, for non-finite gap potentials. To do this we introduce the space

$$
\begin{aligned}
\mathscr{M}^{N}= & \left\{\left(R_{k}\right)_{k \in \mathbb{Z}} / R_{k} \text { is a } 2 \times 2\right. \text { symmetric, real, trace-free } \\
& \text { matrix with } \left.\sum_{k \in \mathbb{Z}} k^{2 N}\left\|R_{k}\right\|^{2}<\infty\right\} .
\end{aligned}
$$

and a map det_{N} from \mathscr{M}^{N} into l_{N}^{2} defined as

$$
\left(R_{k}\right)_{k \in \mathbb{Z}} \xrightarrow{\operatorname{det}_{N}}\left\{2\left(-\operatorname{det} R_{k}\right)^{1 / 2}\right\}_{k \in \mathbb{Z}} .
$$

We will prove
THEOREM 1.2. For $N=0,1$ there exists a real analytic one-to-one map Φ from
\mathscr{H}^{N} into \mathscr{M}^{N} with $\Phi\left(\operatorname{Iso}_{N}(p, q)\right)=\operatorname{det}_{N}^{-1}\left(\operatorname{det}_{N}(\Phi(p, q))\right)$. For $N=1, \Phi$ is onto and bianalytic.

This theorem gives a geometrical description of the "foliation" $\operatorname{Iso}_{N}(p, q)$ in \mathscr{H}^{N}. A similar theorem for the $K d V$ equation has been proved by T. Kappeler in [Kp]. In section 2 we construct the map Φ using results from [Gre-Gui] and [Kp]. Theorem 1.2 follows immediately as in [Kp] using arguments from [GarTru, 1, 2] and

THEOREM 1.3. The derivative of Φ at (p, q) is an isomorphism from \mathscr{H}^{N} to \mathscr{M}^{N} ($N=0,1$).

Theorem 1.3 is proven in section 3.
Let $\Phi=\left(\Phi_{k}\right)_{k \in \mathbb{Z}}$. The above mentioned result concerning the flow by translation is now a consequence of Theorem 1.2 and proved at the end of Section 2:
THEOREM 1.4. Suppose $(p, q) \in \mathscr{H}^{0}$ (resp. \mathscr{H}^{1}). Then for every k with $\lambda_{2 k-1}(p, q)<\lambda_{2 k}(p, q)$ there exists a continuous (resp. cont. differentiable) function $\varphi_{k}(\cdot): \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\Phi_{k}\left(T_{t} p, T_{t} q\right)=\frac{\gamma_{k}(p, q)}{2}\left(\begin{array}{cc}
\cos 2 \varphi_{k}(t) & \sin 2 \varphi_{k}(t) \\
\sin 2 \varphi_{k}(t) & -\cos 2 \varphi_{k}(t)
\end{array}\right)
$$

with $\varphi_{k}(t+1)-\varphi_{k}(t)=k \pi$ for every $t \in \mathbb{R}$.
This shows that the image of $\mu_{k}(\cdot)$ by the flow of translation consists, for all $k \neq 0$, of the whole gap $\left[\lambda_{2 k-1}(p, q), \lambda_{2 k}(p, q)\right]$.

Similarly as in [Kp] for $K d V$ Theorem 1.2 can be applied to the so called finite gap potentials. Define, for a finite subset $J \subseteq \mathbb{Z}$,

$$
\begin{aligned}
& \operatorname{Gap}_{J}:=\left\{(p, q) \in \mathscr{H}^{0}: \lambda_{2 n-1}(p, q)=\lambda_{2 n}(p, q), n \notin J\right\} \text { and } \\
& \operatorname{Gap}_{J, r}:=\left\{(p, q) \in \operatorname{Gap}_{J}: \lambda_{2 n-1}(p, q)<\lambda_{2 n}(p, q), n \in J\right\} .
\end{aligned}
$$

Elements in $\mathrm{Gap}_{J, r}$ are called regular J-gap potentials. It is well known that the potentials in Gap_{J} are, in fact, real analytic. Further, observe that $\operatorname{Gap}_{J}=\Phi^{-1}\left\{R=\left(R_{k}\right)_{k \in \mathbb{Z}} \in \mathscr{M}^{0}: R_{k}=0 \forall k \notin J\right\}$ and thus Gap ${ }_{J}$ is a $2 N$ dimensional manifold where $N=\# J$. Clearly $\mathrm{Gap}_{J, r}$ is open in Gap_{J} and $\Phi\left(\mathrm{Gap}_{J, r}\right)=\left(\mathbb{R}^{+}\right)^{N} \times T^{N}$ (diffeomorphically) where $\mathbb{R}^{+}:=\{x: x>0\}$ and T^{N} denotes the N-torus $\left(S^{1}\right)^{N}$. Obviously Gap ${ }_{J, r}$ is invariant by $N L S$. Therefore, with the symplectic structure coming from $N L S$, it follows from Theorem 1.2 that $\left(\mathbb{R}^{+}\right)^{N} \times T^{N}$ is a symplectic manifold of dimension $2 N$ with a trivial fibration by Lagrangian tori T^{N}. We thus obtain (cf. [Dui])

COROLLARY 1.5. When restricted to $\mathrm{Gap}_{J, r}$, NLS admits global action-angle variables.

2. Global coordinates on \mathscr{H}^{N}

We first define the map Φ mentioned in the introduction.
If $\lambda_{2 k-1}(p, q) \neq \lambda_{2 k}(p, q)(k \in \mathbb{Z})$ one denotes by $F_{2 k-1}(\cdot ; p, q)$ and $F_{2 k}(\cdot ; p, q)$ the two corresponding eigenfunctions of $H(p, q)$ such that, for $j=2 k-1,2 k$
(i) $\left\|F_{j}(\cdot ; p, q)\right\|_{\left.L^{2}(0,1]\right)^{2}}=1$
(ii) If $F_{j}^{(1)}(0 ; p, q) \neq 0$ then $F_{j}^{(1)}(0 ; p, q)>0$

If $F_{j}^{(1)}(0 ; p, q)=0$ then $F_{j}^{(2)}(0 ; p, q)>0$
If $\lambda_{2 k-1}(p, q)=\lambda_{2 k}(p, q)$ then $F_{2 k-1}(\cdot ; p, q)$ and $F_{2 k}(\cdot ; p, q)$ are two orthonormal eigenfunctions such that
(i) $F_{2 k-1}^{(1)}(0 ; p, q)=0$ and $F_{2 k-1}^{(2)}(0 ; p, q)>0$
(ii) If $F_{2 k}^{(2)}(0 ; p, q) \neq 0$ then $F_{2 k}^{(2)}(0 ; p, q)>0$

If $F_{2 k}^{(2)}(0 ; p, q)=0$ then $F_{2 k}^{(1)}(0 ; p, q)>0$
As the eigenvalues λ_{j} are periodic or antiperiodic one has

$$
F_{j}(x+1 ; p, q)=(-1)^{k} F_{j}(x ; p, q)
$$

Let $E_{k}(p, q)$ be the two-dimensional subspace of L^{2} generated by $F_{2 k-1}$ and $F_{2 k}$.
As in [Kp], in order to introduce an orthonormal basis $\left(G_{2 k-1}(\cdot ; p, q)\right.$, $G_{2 k}(\cdot ; p, q)$) of $E_{k}(p, q)$ depending analytically on $(p, q) \in \mathscr{H}^{0}$ one needs the following lemma.

LEMMA 2.1. For $(p, q) \in \mathscr{H}^{0}$ and for every $k \in \mathbb{Z}$ the map

$$
F \mapsto\left(F^{(1)}(0), F^{(2)}(0)\right)
$$

from $E_{k}(p, q)$ into \mathbb{R}^{2} is a linear isomorphism.
Before proving Lemma 2.1, let us introduce some more notations and a few elementary results from [Gre-Gui] which will be used later.

Denote by

$$
F_{j}(x, \lambda ; p, q)=\binom{Y_{j}(x, \lambda ; p, q)}{Z_{j}(x, \lambda ; p, q)} \quad j=1,2
$$

the fundamental solutions to $H(p, q) F_{j}=\lambda F_{j}$ such that

$$
F_{1}(0, \lambda ; p, q)=\binom{1}{0} \quad \text { and } \quad F_{2}(0, \lambda ; p, q)=\binom{0}{1} .
$$

The $\mu_{k}(p, q)$'s (resp. $v_{k}(p, q)$'s) are the simple zeroes of $Z_{1}(1, \cdot ; p, q)$ (resp. $Y_{2}(1, \cdot ;$
$p, q))$ in $\mathbb{C} .\left(\mu_{k}(p, q)\right)_{k \in \mathbb{Z}}\left(\operatorname{resp} .\left(v_{k}(p, q)\right)_{k \in \mathbb{Z}}\right)$ is a strictly increasing sequence of real numbers.

Further

$$
\lambda_{2 k-1}(p, q) \leqslant \mu_{k}(p, q), v_{k}(p, q) \leqslant \lambda_{2 k}(p, q), \quad k \in \mathbb{Z}
$$

Denote by $\Delta(\lambda)$ the discriminant

$$
\Delta(\lambda)=\Delta(\lambda ; p, q)=Y_{1}(1, \lambda ; p, q)+Z_{2}(1, \lambda ; p, q) .
$$

The collection of periodic and antiperiodic eigenvalues $\left(\lambda_{k}(p, q)\right)_{k \in \mathbb{Z}}$ written in increasing order and with multiplicities have the following asymptotics

$$
\lambda_{2 k}(p, q)=k \pi+l^{2}(k)
$$

and

$$
\lambda_{2 k-1}(p, q)=k \pi+l^{2}(k)
$$

where the error terms are uniform on bounded sets of potentials $(p, q) \in L^{2}([0,1])^{2}$.

It follows that for $j=2 k-1,2 k$

$$
F_{1}\left(x, \lambda_{j} ; p, q\right)=\binom{\cos \lambda_{j} x}{-\sin \lambda_{j} x}+l^{2}(k)
$$

and

$$
F_{2}\left(x, \lambda_{j} ; p, q\right)=\binom{\sin \lambda_{j} x}{\cos \lambda_{j} x}+l^{2}(k)
$$

Finally, for $\lambda_{2 k-1}(p, q)<\lambda_{2 k}(p, q)$ one has $(j=2 k-1,2 k)$

$$
\begin{aligned}
F_{j}(x ; p, q)= & \left(\frac{-Y_{2}\left(1, \lambda_{j}(p, q)\right)}{\Delta\left(\lambda_{j}(p, q)\right)}\right)^{1 / 2} F_{1}\left(x, \lambda_{j}(p, q) ; p, q\right) \\
& +\varepsilon_{j}(p, q)\left(\frac{Z_{1}\left(1, \lambda_{j}(p, q)\right)}{\dot{\Delta}\left(\lambda_{j}(p, q)\right)}\right)^{1 / 2} F_{2}\left(x, \lambda_{j}(p, q) ; p, q\right)
\end{aligned}
$$

where $\varepsilon_{j}(p, q)= \pm 1$.

Fix k and (p, q). It suffices to show that

$$
W\left(F_{2 k}(\cdot ; p, q), F_{2 k-1}(\cdot ; p, q)\right)(0) \neq 0
$$

where

$$
\begin{aligned}
& W\left(F_{2 k}(\cdot ; p, q), F_{2 k-1}(\cdot ; p, q)\right)(x) \\
& \quad=F_{2 k}^{(1)}(x ; p, q) F_{2 k-1}^{(2)}(x ; p, q)-F_{2 k}^{(2)}(x ; p, q) F_{2 k-1}^{(1)}(x ; p, q)
\end{aligned}
$$

is the Wronskian of $F_{2 k}$ and $F_{2 k-1}$. Using the equation $H(p, q) F_{j}=\lambda_{j} F_{j}$ one derives

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x} W\left(F_{2 k}, F_{2 k-1}\right)(x) \\
& \quad=\left(\lambda_{2 k}-\lambda_{2 k-1}\right)\left(F_{2 k}^{(1)}(x) F_{2 k-1}^{(1)}(x)+F_{2 k}^{(2)}(x) F_{2 k-1}^{(2)}(x)\right)
\end{aligned}
$$

(cf. [Gre-Gui]).
Thus, if $\lambda_{2 k}=\lambda_{2 k-1}$, we conclude that $W\left(F_{2 k}, F_{2 k-1}\right)$ is constant. As $F_{2 k}$ and $F_{2 k-1}$ are linearly independent, this constant is different from zero. In the case where $\lambda_{2 k-1}<\lambda_{2 k}$ we first show that $W\left(F_{2 k}, F_{2 k-1}\right)(x)$ has at most simple zeroes. Assume that this is not the case. Then there exists $0 \leqslant x_{0} \leqslant 1$ and $0 \leqslant \varphi\left(x_{0}\right) \leqslant 2 \pi$ such that

$$
\begin{aligned}
& F_{2 k}^{(1)}\left(x_{0}\right) F_{2 k-1}^{(2)}\left(x_{0}\right)-F_{2 k}^{(2)}\left(x_{0}\right) F_{2 k-1}^{(1)}\left(x_{0}\right) \\
& \quad=\left|F_{2 k}\left(x_{0}\right)\right|\left|F_{2 k-1}\left(x_{0}\right)\right| \sin \varphi\left(x_{0}\right)=0
\end{aligned}
$$

and

$$
\begin{aligned}
& F_{2 k}^{(1)}\left(x_{0}\right) F_{2 k-1}^{(1)}\left(x_{0}\right)+F_{2 k}^{(2)}\left(x_{0}\right) F_{2 k-1}^{(2)}\left(x_{0}\right) \\
& \quad=\left|F_{2 k}\left(x_{0}\right)\right|\left|F_{2 k-1}\left(x_{0}\right)\right| \cos \varphi\left(x_{0}\right)=0
\end{aligned}
$$

where here $|\cdot|$ denotes the Euclidean norm in \mathbb{R}^{2}.
But both $\left|F_{2 k}\left(x_{0}\right)\right| \neq 0$ and $\left|F_{2 k-1}\left(x_{0}\right)\right| \neq 0$ which leads to a contradiction.
Let us consider the smooth path $(t p, t q)$ in \mathscr{H}^{0}. Denote by $t_{0}=\max \left\{0 \leqslant t \leqslant 1 ; \lambda_{2 k}(t p, t q)=\lambda_{2 k-1}(t p, t q)\right\}$. Then $0 \leqslant t_{0}<1$. Choose L^{2} normalized eigenfunctions $\tilde{F}_{2 k}(\cdot, t p, t q)$ and $\widetilde{F}_{2 k-1}(\cdot, t p, t q)$ such that for $t=1$, $\tilde{F}_{2 k}(\cdot, p, q)=F_{2 k}(\cdot, p, q)$ and $\tilde{F}_{2 k-1}(\cdot, p, q)=F_{2 k-1}(\cdot, p, q)$ and $\tilde{F}_{2 k}$ and $\tilde{F}_{2 k-1}$ are continuous in t, i.e. $\tilde{F}_{2 k}$ and $\widetilde{F}_{2 k-1} \in C\left(\left[t_{0}, 1\right],\left(H^{1}[0,1]\right)^{2}\right)$. In particular we conclude that $\tilde{F}_{2 k}\left(\cdot ; t_{0} p, t_{0} q\right)$ and $\tilde{F}_{2 k-1}\left(\cdot ; t_{0} p, t_{0} q\right)$ are L^{2}-normalized orthogonal eigenfunctions for $\lambda_{2 k}\left(t_{0} p, t_{0} q\right)$. We conclude that for $t=t_{0}$
$W\left(\tilde{F}_{2 k}, \tilde{F}_{2 k-1}\right)$ is constant and different from zero. Clearly $W(t, x):=$ $W\left(\tilde{F}_{2 k}(\cdot, t p, t q), \quad \tilde{F}_{2 k-1}(\cdot, t p, t q)\right)(x)$ is continuous in $0 \leqslant x \leqslant 1$ and $t_{0} \leqslant$ $t \leqslant 1$. To simplify notation assume that $W\left(t_{0}, x\right)>0(0 \leqslant x \leqslant 1)$. For fixed $t_{0} \leqslant t \leqslant 1, W(t, x)$ can have at most simple zeroes and thus by a classical argument from homotopy theory we conclude that $W(t, x)$ can never vanish for $0 \leqslant x \leqslant 1$ and $t_{0} \leqslant t \leqslant 1$ and Lemma 2.1 is proved.

We use Lemma 2.1 to define $G_{2 k-1}(\cdot ; p, q)$ as the unique function in $E_{k}(p, q)$ satisfying
(i) $\left\|G_{2 k-1}(\cdot ; p, q)\right\|_{L^{2}\left([0,1)^{2}\right.}=1$
(ii) $G_{2 k-1}^{(1)}(0 ; p, q)=0$ and $G_{2 k-1}^{(2)}(0 ; p, q)>0$.
$G_{2 k}(\cdot ; p, q)$ is then defined to be the unique function in $E_{k}(p, q)$ such that
(i) $\left\|G_{2 k}(\cdot ; p, q)\right\|_{\left.L^{2}(0,1]\right)^{2}}=1 ; G_{2 k}^{(1)}(0 ; p, q)>0$
(ii) $\left(G_{2 k}(\cdot ; p, q), G_{2 k-1}(\cdot ; p, q)\right)_{L^{2}([0,1])^{2}}=0$

Clearly, $G_{2 k}$ and $G_{2 k-1}$ can be expressed in terms of $F_{2 k}$ and $F_{2 k-1}$. There exist a unique $\theta_{k}(p, q) \in[0,2 \pi)$ such that

$$
\binom{G_{2 k}(\cdot ; p, q)}{G_{2 k-1}(\cdot ; p, q)}=\left(\begin{array}{cc}
\cos \theta_{k}(p, q) & -\sin \theta_{k}(p, q) \\
\sin \theta_{k}(p, q) & \cos \theta_{k}(p, q)
\end{array}\right)\binom{F_{2 k}(\cdot ; p, q)}{\varepsilon_{k} F_{2 k-1}(\cdot ; p, q)}
$$

where $\varepsilon_{k}=\operatorname{sign} W\left(F_{2 k}(\cdot ; p, q), F_{2 k-1}(\cdot ; p, q)\right)(0)$.
Using a perturbation argument (cf. [Ka]) one proves as in [Kp] that $G_{2 k}(\cdot ; p, q)$ and $G_{2 k-1}(\cdot ; p, q)$ are both analytic functions of (p, q) as maps from $\left(L^{2}([0,1])\right)^{2}$ into $\left(H_{\mathbb{R}}^{1}([0,1])\right)^{2}$.
$F_{2 k}$ and $F_{2 k-1}$ are eigenfunctions of $H(p, q)$ but they cannot depend analytically on (p, q) due to possible multiplicity of the eigenvalue $\lambda_{2 k}$. $G_{2 k}$ and $G_{2 k-1}$ are not necessarily eigenfunctions but they depend analytically on (p, q).

For $(p, q) \in \mathscr{H}^{N}(N=0,1)$ and for $k \in \mathbb{Z}$ define
$\Phi_{k}(p, q)=$

$$
\left(\begin{array}{cc}
\left(G_{2 k}(\cdot),\left(H-\tau_{k}\right) G_{2 k}(\cdot)\right)_{L^{2}([0,1])^{2}} & \left(G_{2 k}(\cdot),\left(H-\tau_{k}\right) G_{2 k-1}(\cdot)\right)_{L^{2}([0,1])^{2}} \\
\left(G_{2 k-1}(\cdot),\left(H-\tau_{k}\right) G_{2 k}(\cdot)\right)_{L^{2}([0,1])^{2}} & \left(G_{2 k-1}(\cdot),\left(H-\tau_{k}\right) G_{2 k-1}(\cdot)\right)_{L^{2}([0,1])^{2}}
\end{array}\right)
$$

where $\tau_{k}=\left(\lambda_{2 k}+\lambda_{2 k-1}\right) / 2$. One easily shows that

$$
\Phi_{k}(p, q)=\frac{\gamma_{k}(p, q)}{2}\left(\begin{array}{cc}
\cos 2 \theta_{k}(p, q) & \sin 2 \theta_{k}(p, q) \\
\sin 2 \theta_{k}(p, q) & -\cos 2 \theta_{k}(p, q)
\end{array}\right)
$$

where $\gamma_{k}(p, q)=\lambda_{2 k}(p, q)-\lambda_{2 k-1}(p, q)$.
The matrix $\Phi_{k}(p, q)$ is symmetric and its trace is zero. Its eigenvalues are
$\pm\left[\gamma_{k}(p, q) / 2\right]$. For every $k \in \mathbb{Z}, \Phi_{k}(\cdot, \cdot)$ is a compact map from \mathscr{H}^{0} into the space of real symmetric trace free matrices. (See [Kp] for a proof.)

Furthermore it is proved in [Gre-Gui] that $\left(\gamma_{k}(p, q)\right)_{k \in \mathbb{Z}} \in l^{2}(\mathbb{Z})$ (resp. $l_{1}^{2}(\mathbb{Z})$) for $(p, q) \in \mathscr{H}^{0}$ (resp. \mathscr{H}^{1}) and, for $N=0,1, \sum_{k} \gamma_{k}(p, q)^{2} k^{2 N}<\infty$ uniformly on bounded sets of potentials in \mathscr{H}^{N}.

DEFINITION 2.2. For $(p, q) \in \mathscr{H}^{N}$ set

$$
\Phi(p, q)=\left(\Phi_{k}(p, q)\right)_{k \in \mathbb{Z}}
$$

It follows that $\Phi(\cdot, \cdot)$ is a bounded map from $\mathscr{H}^{N}(N=0,1)$ into \mathscr{M}^{N}.
As in $[\mathrm{Kp}]$ one shows that $\Phi(\cdot, \cdot)$ is real analytic. Furthermore $\Phi(\cdot, \cdot)$ preserves isospectrality in the following sense: $\Phi(p, q)$ and $\Phi\left(p^{\prime}, q^{\prime}\right)$ are isospectral, i.e., $\quad \operatorname{spec} \Phi_{k}(p, q)=\operatorname{spec} \Phi_{k}\left(p^{\prime}, q^{\prime}\right)$ for every k, if and only if $\gamma_{k}(p, q)=\gamma_{k}\left(p^{\prime}, q^{\prime}\right)$ for every k. It is shown in [Gre-Gui] that, for (p, q) and (p^{\prime}, q^{\prime}) in $\mathscr{H}^{1}, \gamma_{k}(p, q)=\gamma_{k}\left(p^{\prime}, q^{\prime}\right)$ for every k implies $\lambda_{k}(p, q)=\lambda_{k}\left(p^{\prime}, q^{\prime}\right)$ for every k. For (p, q) and $\left(p^{\prime}, q^{\prime}\right)$ in \mathscr{H}^{0} the same conclusion follows from Appendix A (see Corollary A.4) by the same argument given for the case $N=1$ in [Gre-Gui].

REMARK 2.3. $\mathscr{M}^{0}\left(\right.$ resp. $\left.\mathscr{M}^{1}\right)$ can be identified with $l^{2}(\mathbb{Z})\left(\right.$ resp. $\left.l_{1}^{2}(\mathbb{Z})\right)$ by the map

$$
\begin{aligned}
& \left(\frac{\gamma_{k}(p, q)}{2} \cos 2 \theta_{k}(p, q), \frac{\gamma_{k}(p, q)}{2} \sin 2 \theta_{k}(p, q)\right) \\
& \rightarrow c_{k}(p, q)=\frac{\gamma_{k}(p, q)}{2} \mathrm{e}^{2 i \theta_{k}(p, q)} \quad k \in \mathbb{Z} .
\end{aligned}
$$

It then follows that for $(p, q) \in \mathscr{H}^{N}$ with $N=0,1$

$$
\sum_{k \in \mathbb{Z}} k^{2 N}\left\|\Phi_{k}(p, q)\right\|^{2}=\sum_{k \in \mathbb{Z}} k^{2 N}\left|c_{k}\right|^{2}<\infty
$$

In particular $\Phi(\cdot, \cdot)$ coordinatizes \mathscr{H}^{N} globally.
It follows that for $\left(p_{0}, q_{0}\right) \in \mathscr{H}^{N}$

$$
\Phi\left(\operatorname{Iso}_{N}\left(p_{0}, q_{0}\right)\right)=\left\{\left(c_{k}\right)_{k \in \mathbb{Z}} \in l_{N}^{2}(\mathbb{Z})| | c_{k}\left|=\left|c_{k}\left(p_{0}, q_{0}\right)\right|, k \in \mathbb{Z}\right\} .\right.
$$

One recovers the well-known result that $\operatorname{Iso}_{N}\left(p_{0}, q_{0}\right)$ is a compact set, generically an infinite product of circles, the radii of which are in $l_{N}^{2}(\mathbb{Z})$.

We now prove Theorem 1.4. Following [Kp, Thm. 4] one easily shows that there exists a continuous (resp. continuously differentiable in the case
$\left.(p, q) \in \mathscr{H}^{1}\right)$ function $\psi_{k}(t, s)$ such that

$$
\begin{aligned}
G_{2 k-1}\left(x ; s T_{t} p, s T_{t} q\right)= & \cos \psi_{k}(t, s) \tilde{F}_{2 k-1}(x+t ; s p, s q) \\
& +\sin \psi_{k}(t, s) \tilde{F}_{2 k}(x+t ; s p, s q) \\
G_{2 k}\left(x ; s T_{t} p, s T_{t} q\right)=- & \sin \psi_{k}(t, s) \tilde{F}_{2 k-1}(x+t ; s p, s q) \\
+ & \cos \psi_{k}(t, s) \tilde{F}_{2 k}(x+t ; s p, s q)
\end{aligned}
$$

for $(t, s) \in[0,1]^{2}$ where, for $s_{0} \leqslant s \leqslant 1, \tilde{F}_{2 k}(\cdot ; s p, s q)$ and $\tilde{F}_{2 k-1}(\cdot ; s p, s q)$ are chosen as in the proof of Lemma 2.1 with $s_{0}=\max \{0 \leqslant s<1$; $\left.\lambda_{2 k}(s p, s q)=\lambda_{2 k-1}(s p, s q)\right\}$. Taking possible crossings of the eigenvalues $\lambda_{2 k}(s p, s q)$ and $\lambda_{2 k-1}(s p, s q)$ into account (cf. [Ka]), $\tilde{F}_{2 k}(\cdot ; s p, s q)$ and $\tilde{F}_{2 k-1}(\cdot ; s p, s q)$ can be chosen to depend smoothly on $s, 0 \leqslant s \leqslant s_{0}$, if one allows $\tilde{F}_{2 k}(\cdot ; s p, s q)$ to be either a (normalized) eigenfunction for $\lambda_{2 k}(s p, s q)$ or $\lambda_{2 k-1}(s p, s q)$ and similarly for $\tilde{F}_{2 k-1}(\cdot ; s p, s q)$.

Define $\varphi_{k}(t):=\psi_{k}(t, \quad 1)$ and the winding numbers $h_{k}(s):=$ $\left(\psi_{k}(1+t, s)-\psi_{k}(t, s)\right) / \pi, h_{k}(\cdot)$ being a continuous function of s with values in \mathbb{Z}. Therefore $h_{k}(s)=h_{k}(0)=k$ for every $s \in[0,1]$ and thus $\varphi_{k}(1+t)$ $-\varphi_{k}(t)=k \pi$.

REMARK 2.4. For $(p, q) \in \mathscr{H}^{1}$ one shows that

$$
\operatorname{sign} \frac{\mathrm{d} \varphi_{k}}{\mathrm{~d} t}(t)=\operatorname{sign}\left(\lambda_{2 k-1}+q(t)\right)
$$

Then, for $|k|$ sufficiently large, one has

$$
\frac{\mathrm{d} \varphi_{k}}{\mathrm{~d} t}(t)>0 \text { if } k>0 \quad \text { and } \quad \frac{\mathrm{d} \varphi_{k}(t)}{\mathrm{d} t}<0 \text { if } k<0
$$

i.e. $\Phi_{k}\left(T_{t} p, T_{t} q\right)$ winds $|k|$ times around the origin without stopping, clockwise if $k<0$ and counterclockwise if $k>0$.

3. The derivative of $\boldsymbol{\Phi}$

In this section we compute the derivative of Φ and show that it is a linear isomorphism from \mathscr{H}^{N} onto \mathscr{M}^{N} for $N=0,1$.

As in [Kp] it is convenient to write Φ in a slightly different form. One writes Φ as a $\operatorname{map} \Psi$ from \mathscr{H}^{N} into $l_{N}^{2}(\mathbb{Z})$ (see Remark 2.3) with $\Psi(p, q)=\left(\Psi_{k}(p, q)\right)_{k \in \mathbb{Z}}$
where

$$
\begin{aligned}
& \Psi_{2 k-1}(p, q)=\left(G_{2 k-1}(\cdot ; p, q),\left(H-\tau_{k}(p, q)\right) G_{2 k-1}(\cdot ; p, q)\right)_{L^{2}([0,1])^{2}} \\
& \Psi_{2 k}(p, q)=\left(G_{2 k}(\cdot ; p, q),\left(H-\tau_{k}(p, q)\right) G_{2 k-1}(\cdot ; p, q)\right)_{L^{2}([0,1])^{2}} .
\end{aligned}
$$

Let $d_{(p, q)} \Psi_{2 k}\left(\right.$ resp. $\left.d_{(p, q)} \Psi_{2 k-1}\right)$ denote the derivative of $\Psi_{2 k}(\cdot, \cdot)$ (resp. $\left.\Psi_{2 k-1}(\cdot, \cdot)\right)$.

THEOREM 3.1. Suppose $(u, v) \in \mathscr{H}^{0}$. Then

$$
\begin{aligned}
\mathrm{d}_{(p, q)} & \Psi_{2 k-1}[(u, v)] \\
= & 2 \Psi_{2 k}(p, q) \int_{0}^{1} \mathrm{~d}_{(p, q)} G_{2 k-1}(\cdot ; p, q)[(u, v)](x) \cdot G_{2 k}(x ; p, q) \mathrm{d} x \\
& +\frac{1}{2} \int_{0}^{1}\left(G_{2 k-1}^{(2)}(x ; p, q)^{2}-G_{2 k-1}^{(1)}(x ; p, q)^{2}+G_{2 k}^{(1)}(x ; p, q)^{2}\right. \\
& \left.-G_{2 k}^{(2)}(x ; p, q)^{2}\right) v(x) \mathrm{d} x+\int_{0}^{1}\left(G_{2 k-1}^{(1)}(x ; p, q) G_{2 k-1}^{(2)}(x ; p, q)\right. \\
& \left.-G_{2 k}^{(1)}(x ; p, q) G_{2 k}^{(2)}(x ; p, q)\right) u(x) \mathrm{d} x \\
d_{(p, q)} & \Psi_{2 k}[(u, v)] \\
= & -2 \Psi_{2 k-1}(p, q) \int_{0}^{1} d_{(p, q)} G_{2 k-1}(\cdot ; p, q)[(u, v)](x) \\
& \cdot G_{2 k}(x ; p, q) \mathrm{d} x+\int_{0}^{1}\left(-G_{2 k}^{(1)}(x ; p, q) G_{2 k-1}^{(1)}(x ; p, q)\right. \\
& \left.+G_{2 k}^{(2)}(x ; p, q) G_{2 k-1}^{(2)}(x ; p, q)\right) v(x) \mathrm{d} x \\
& +\int_{0}^{1}\left(G_{2 k}^{(1)}(x ; p, q) G_{2 k-1}^{(2)}(x ; p, q)\right. \\
& \left.+G_{2 k}^{(2)}(x ; p, q) G_{2 k-1}^{(1)}(x ; p, q)\right) u(x) \mathrm{d} x
\end{aligned}
$$

where '.' denotes the scalar product in \mathbb{R}^{2}.
Proof of Theorem 3.1. The derivative $d_{(p, q)} \Psi_{2 k-1}[(u, v)]$ is given by

$$
\begin{aligned}
d_{(p, q)} & \Psi_{2 k-1}[(u, v)] \\
= & \left(d_{(p, q)} G_{2 k-1}(\cdot ; p, q)[(u, v)],\left(H-\tau_{k}\right) G_{2 k-1}(\cdot ; p, q)\right) \\
& +\left(G_{2 k-1}(\cdot ; p, q),\left(H-\tau_{k}\right) d_{(p, q)} G_{2 k-1}(\cdot ; p, q)[(u, v)](\cdot)\right) \\
& +\left(G_{2 k-1}(\cdot ; p, q), d_{(p, q)}\left(H-\tau_{k}\right)[(u, v)](\cdot) \cdot G_{2 k-1}(\cdot ; p, q)\right) .
\end{aligned}
$$

The chosen normalization of G_{k} imply that

$$
\left(d_{(p, q)} G_{k}(\cdot ; p, q), G_{k}(\cdot ; p, q)\right)=0, \quad k \in \mathbb{Z} .
$$

Further

$$
\begin{aligned}
\left(H-\tau_{k}(p, q)\right) G_{2 k-1}(x ; p, q)= & -\frac{\gamma_{k}(p, q)}{2} \cos 2 \theta_{k}(p, q) G_{2 k-1}(x ; p, q) \\
& +\frac{\gamma_{k}(p, q)}{2} \sin 2 \theta_{k}(p, q) G_{2 k}(x ; p, q)
\end{aligned}
$$

One then gets

$$
\begin{aligned}
d_{(p, q)} & \Psi_{2 k-1}[(u, v)] \\
= & \Psi_{2 k}(p, q)\left(G_{2 k}(\cdot ; p, q), d_{(p, q)} G_{2 k-1}(\cdot ; p, q)[(u, v)](\cdot)\right) \\
& +\Psi_{2 k}(p, q)\left(d_{(p, q)} G_{2 k-1}(\cdot ; p, q)[(u, v)](\cdot), G_{2 k}(\cdot ; p, q)\right) \\
& +\left(G_{2 k-1}(\cdot ; p, q),\left(\begin{array}{rr}
-v(\cdot) & u(\cdot) \\
u(\cdot) & v(\cdot)
\end{array}\right) G_{2 k-1}(\cdot ; p, q)\right) \\
& -d_{(p, q)} \tau_{k}[(u, v)] .
\end{aligned}
$$

Hence one finally obtains

$$
\begin{aligned}
d_{(p, q)} & \Psi_{2 k-1}[(u, v)] \\
= & 2 \Psi_{2 k-1}(p, q)\left(G_{2 k}(\cdot ; p, q), d_{(p, q)} G_{2 k-1}(\cdot ; p, q)[(u, v)](\cdot)\right) \\
& +\left(G_{2 k-1}(\cdot ; p, q),\left(\begin{array}{rr}
-v(\cdot) & u(\cdot) \\
u(\cdot) & v(\cdot)
\end{array}\right) G_{2 k-1}(\cdot ; p, q)\right) \\
& -d_{(p, q)} \tau_{k}[(u, v)] .
\end{aligned}
$$

Let us now compute $d_{(p, q)} \tau_{k}[(u, v)]$.
Define, for fixed $k \in \mathbb{Z}$, the open set $\mathscr{U}_{k} \subseteq \mathscr{H}^{0}$

$$
\mathscr{U}_{k}=\left\{(p, q) \in \mathscr{H}^{0} ; \lambda_{2 k}(p, q) \text { simple }\right\} .
$$

$\lambda_{2 k}(\cdot, \cdot)$ and $\lambda_{2 k-1}(\cdot, \cdot)$ are continuously differentiable on \mathscr{U}_{k}.
Using $H(p, q) F_{j}=\lambda_{j}(p, q) F_{j}(j=2 k-1,2 k)$ one obtains for $(p, q) \in \mathscr{U}_{k}$

$$
d_{(p, q)} \lambda_{j}[(u, v)]=\left(F_{j}(\cdot ; p, q),\left(\begin{array}{rr}
-v(\cdot) & u(\cdot) \\
u(\cdot) & v(\cdot)
\end{array}\right) F_{j}(\cdot ; p, q)\right) .
$$

Thus

$$
\begin{aligned}
d_{(p, q)} \tau_{k}[(u, v)]= & \frac{1}{2} \\
& \int_{0}^{1}\left(F_{2 k}^{(2)}(x ; p, q)^{2}+F_{2 k-1}^{(2)}(x ; p, q)^{2}-F_{2 k}^{(1)}(x ; p, q)^{2}\right. \\
& \left.-F_{2 k-1}^{(1)}(x ; p, q)^{2}\right) v(x) \mathrm{d} x \\
& +\int_{0}^{1}\left(F_{2 k}^{(1)}(x ; p, q) F_{2 k}^{(2)}(x ; p, q)\right. \\
& \left.+F_{2 k-1}^{(1)}(x ; p, q) F_{2 k-1}^{(2)}(x ; p, q)\right) u(x) \mathrm{d} x .
\end{aligned}
$$

Expressed in terms of the G_{k} 's we obtain

$$
\begin{aligned}
d_{(p, q)} \tau_{k}[(u, v)] & =\frac{1}{2} \int_{0}^{1}\left(G_{2 k}^{(2)}(x ; p, q)^{2}+G_{2 k-1}^{(2)}(x ; p, q)^{2}-G_{2 k}^{(1)}(x ; p, q)^{2}\right. \\
& \left.-G_{2 k-1}^{(1)}(x ; p, q)^{2}\right) v(x) \mathrm{d} x \\
& +\int_{0}^{1}\left(G_{2 k}^{(1)}(x ; p, q) G_{2 k}^{(2)}(x ; p, q)\right. \\
& \left.+G_{2 k-1}^{(1)}(x ; p, q) G_{2 k-1}^{(2)}(x ; p, q)\right) u(x) \mathrm{d} x
\end{aligned}
$$

Now \mathscr{U}_{k} is dense in \mathscr{H}^{0} and both sides of the least equality are continuous functions of (p, q) in \mathscr{H}^{0}. Thus this equality expresses $d_{(p, q)} \tau_{k}$ in terms of the G_{k} 's on $\mathscr{H}^{0} . d_{(p, q)} \Psi_{2 k}$ is calculated in the same way as $d_{(p, q)} \Psi_{2 k-1}$.

The derivatives $d_{(p, q)} \Psi_{2 k}$ and $d_{(p, q)} \Psi_{2 k-1}$ can be expressed in a slightly different way as follows.

COROLLARY 3.2. Suppose $(u, v) \in \mathscr{H}^{0}$. Then

$$
\left.\begin{array}{l}
\left(\begin{array}{c}
d_{(p, q)} \Psi_{2 k}[(u, v)] \\
d_{(p, q)}
\end{array} \Psi_{2 k-1}[(u, v)]\right.
\end{array}\right) .
$$

$$
\begin{aligned}
& +\left(\int _ { 0 } ^ { 1 } \left(F_{2 k-1}^{(1)}(x ; p, q) F_{2 k-1}^{(2)}(x ; p, q)\right.\right. \\
& \left.\left.\quad-F_{2 k}^{(1)}(x ; p, q) F_{2 k}^{(2)}(x ; p, q)\right) u(x) \mathrm{d} x\right)\binom{-\sin 2 \theta_{k}(p, q)}{\cos 2 \theta_{k}(p, q)} \\
& +\varepsilon_{k}\left(\int _ { 0 } ^ { 1 } \left(F_{2 k}^{(1)}(x ; p, q) F_{2 k-1}^{(2)}(x ; p, q)\right.\right. \\
& \left.\left.\quad+F_{2 k-1}^{(1)}(x ; p, q) F_{2 k}^{(2)}(x ; p, q)\right) u(x) \mathrm{d} x\right)\binom{\cos 2 \theta_{k}(p, q)}{\sin 2 \theta_{k}(p, q)} \\
& +\gamma_{k}(p, q)\left(\int_{0}^{1} d_{(p, q)} G_{2 k-1}(\cdot ; p, q)[(u, v)](x)\right. \\
& \left.\quad \cdot G_{2 k}(x ; p, q) \mathrm{d} x\right)\binom{\cos 2 \theta_{k}(p, q)}{\sin 2 \theta_{k}(p, q)}
\end{aligned}
$$

where $\varepsilon_{k}=\operatorname{sign} W\left(F_{2 k}(\cdot ; p, q), F_{2 k-1}(\cdot ; p, q)\right)(0)$.
We now study the asymptotics of $d_{(p, q)} \Psi_{2 k}$ and $d_{(p, q)} \Psi_{2 k-1}$. First of all it will be useful to bring

$$
\int_{0}^{1} d_{(p, q)} G_{2 k-1}(\cdot ; p, q)[(u, v)](x) \cdot G_{2 k}(x, p, q) \mathrm{d} x
$$

into another form.
LEMMA 3.3.

$$
\begin{aligned}
& \int_{0}^{1} d_{(p, q)} G_{2 k-1}(\cdot ; p, q)[(u, v)](x) \cdot G_{2 k}(x ; p, q) \mathrm{d} x \\
& \quad=\quad \sum_{j \neq 2 k, 2 k-1} F_{j}^{(1)}(0)\left(F_{j},\left(\begin{array}{rr}
-v & u \\
u & v
\end{array}\right) F_{2 k}\right) \sin \theta_{k} \frac{1}{\lambda_{2 k}-\lambda_{j}} \\
& \quad+\quad \sum_{j \neq 2 k, 2 k-1} F_{j}^{(1)}(0)\left(F_{j},\left(\begin{array}{rr}
-v & u \\
u & v
\end{array}\right) F_{2 k-1}\right) \varepsilon_{k} \cos \theta_{k} \frac{1}{\lambda_{2 k-1}-\lambda_{j}} .
\end{aligned}
$$

The proof of Lemma 3.3 follows as in [Kp; Lemma 5.3].
In order to bound $F_{2 k-1}(\cdot)$ and $F_{2 k}(\cdot)$ uniformly with respect to k we use the following lemma.

LEMMA 3.4. For $(p, q) \in \mathscr{H}^{0}$ and $k \in \mathbb{Z}$ denote $I_{k}(\cdot)$ the unique function in $E_{k}(p, q)$ such that $\left\|I_{k}(\cdot)\right\|_{L^{2}([0,1])^{2}}=1$ with $I_{k}^{(1)}(0)>0$ and $I_{k}^{(2)}(0)=0$. Then for
$j \in\{2 k-1,2 k\}$
(i) $F_{1}\left(\cdot, \lambda_{j}\right)=I_{k}(\cdot)+l^{2}(k)$ and
(ii) $F_{2}\left(\cdot, \lambda_{j}\right)=G_{2 k-1}(\cdot)+l^{2}(k)$.

The error terms are uniform with respect to $0 \leqslant x \leqslant 1$ and (p, q) in any bounded set of \mathscr{H}^{0}.

REMARK. We present a proof of Lemma 3.4 which generalizes easily to a situation encountered in Lemma 3.14 below.

Proof of Lemma 3.4. (1) Assume that $j=2 k$. Observe that (see [Gre-Gui])

$$
F_{1}\left(0, \lambda_{2 k}\right)=\binom{1}{0} \quad \text { and } \quad F_{1}\left(1, \lambda_{2 k}\right)=\binom{(-1)^{k}}{0}+l^{2}(k) .
$$

Existence and uniqueness of $I_{k}(\cdot)$ follow from Lemma 2.1. Then there exist α_{k} and β_{k} satisfying

$$
I_{k}(\cdot)=\alpha_{k} F_{2 k-1}(\cdot)+\beta_{k} F_{2 k}(\cdot)
$$

with $\alpha_{k}^{2}+\beta_{k}^{2}=1$.
Further

$$
H(p, q) I_{k}(\cdot)=\lambda_{2 k} I_{k}(\cdot)-\alpha_{k} \gamma_{k} F_{2 k-1}(\cdot)
$$

with $\left(\alpha_{k} \gamma_{k}\right)_{k \in \mathbb{Z}} \in l^{2}(\mathbb{Z})$.
Define

$$
f_{k}(\cdot)=I_{k}(\cdot)-I_{k}^{(1)}(0) F_{1}\left(\cdot, \lambda_{2 k}\right)
$$

Then $f_{k}(\cdot)$ satisfies

$$
H(p, q) f_{k}(\cdot)=\lambda_{2 k} f_{k}(\cdot)-\alpha_{k} \gamma_{k} F_{2 k-1}(\cdot)
$$

with

$$
f_{k}(0)=\binom{0}{0}
$$

Set

$$
K(x)=\left(\begin{array}{ll}
F_{1}^{(1)}\left(x, \lambda_{2 k}\right) & F_{2}^{(1)}\left(x, \lambda_{2 k}\right) \\
F_{1}^{(2)}\left(x, \lambda_{2 k}\right) & F_{2}^{(2)}\left(x, \lambda_{2 k}\right)
\end{array}\right) .
$$

We then obtain

$$
f_{k}(x)=-\int_{0}^{x} K(x)^{-1} K\left(x^{\prime}\right)\left(\alpha_{k} \gamma_{k} F_{2 k-1}\left(x^{\prime}\right)\right) \mathrm{d} x^{\prime}
$$

It follows from the estimates of $F_{1}(\cdot, \lambda)$ and $F_{2}(\cdot, \lambda)$ in [Gre-Gui; Section 1] that there is a constant $C>0$ independent of k such that

$$
\left\|f_{k}\right\|_{\infty} \leqslant C\left|\alpha_{k}\right| \gamma_{k} \leqslant C \gamma_{k} .
$$

Therefore we get

$$
\left\|F_{1}\left(\cdot, \lambda_{2 k}\right)\right\|_{L^{2}([0,1])^{2}} I_{k}^{(1)}(0)=1+l^{2}(k) .
$$

Further we get from [Gre-Gui; Section 1]

$$
\left\|F_{1}\left(\cdot, \lambda_{2 k}\right)\right\|_{L^{2}([0,1])^{2}}=1+l^{2}(k) .
$$

Thus

$$
I_{k}^{(1)}(0)=1+l^{2}(k)
$$

and (i) is proved with $j=2 k$. The case $j=2 k-1$ follows exactly in the same way.

To prove (ii) remark that

$$
F_{2}\left(0, \lambda_{j}\right)=\binom{0}{1} \quad \text { and } \quad F_{2}\left(1, \lambda_{j}\right)=\binom{0}{(-1)^{k}}+l^{2}(k) .
$$

Further

$$
\left\|G_{2 k-1}(\cdot)\right\|_{L^{2}([0,1])^{2}}=1 \quad \text { and } \quad G_{2 k-1}^{(2)}(0)>0
$$

Thus (ii) follows in the same way as (i) and Lemma 3.4 is proved.
Let us deduce from Lemma 3.4 that

$$
\begin{equation*}
\left\|F_{k}(\cdot)\right\|_{L^{\infty}([0,1])^{2}} \leqslant C \tag{3.1}
\end{equation*}
$$

uniformly with respect to k.
Consider $F_{2 k}$. For $|k|$ sufficiently large it follows from Lemma 3.4 that $W\left(I_{k}, G_{2 k-1}\right)(\cdot) \neq 0$ because $W\left(F_{1}\left(\cdot, \lambda_{2 k}\right), F_{2}\left(\cdot, \lambda_{2 k}\right)\right)=1$.

Therefore

$$
F_{2 k}(\cdot)=\alpha_{k} I_{k}(\cdot)+\beta_{k} G_{2 k-1}(\cdot), \quad \alpha_{k}, \beta_{k} \in \mathbb{R}
$$

for $|k|$ sufficiently large.
From $\left\|F_{2 k}(\cdot)\right\|_{L^{2}([0,1])^{2}}=1$ we deduce that

$$
1=\alpha_{k}^{2}+\beta_{k}^{2}+2 \alpha_{k} \beta_{k}\left(I_{k}(\cdot), G_{2 k-1}(\cdot)\right)_{L^{2}([0,1])^{2}}
$$

with $\quad\left|\left(I_{k}, \quad G_{2 k-1}\right)\right| \leqslant 1 \quad$ and $\quad\left(I_{k}(\cdot), \quad G_{2 k-1}\right) \in l^{2}(k) \quad$ because $\quad\left(F_{1}\left(\cdot, \lambda_{2 k}\right)\right.$, $\left.F_{2}\left(\cdot, \lambda_{2 k}\right)\right) \in l^{2}(k)$.

We then get

$$
\left|\alpha_{k}\right| \leqslant C \quad \text { and } \quad\left|\beta_{k}\right| \leqslant C
$$

uniformly with respect to k. (3.1) then follows from Lemma 3.4.
We now study the asymptotics of $d_{(p, q)} \Psi_{2 k}$ and $d_{(p, q)} \Psi_{2 k-1}$. One easily shows that

$$
\begin{aligned}
& G_{2 k}(x ; p, q)=\binom{\cos k \pi x}{-\sin k \pi x}+l^{2}(k) \\
& G_{2 k-1}(x ; p, q)=\binom{\sin k \pi x}{\cos k \pi x}+l^{2}(k)
\end{aligned}
$$

where the error terms are uniform with respect to $0 \leqslant x \leqslant 1$. Furthermore since $G_{2 k}(\cdot ; p, q)$ and $G_{2 k-1}(\cdot ; p, q)$ are real analytic functions of (p, q) as maps from \mathscr{H}^{0} into $H_{\mathbb{R}}^{1}([0,1])^{2}$ it follows that $d_{(p, q)} G_{2 k}(\cdot ; p, q)$ and $d_{(p, q)} G_{2 k-1}(\cdot ; p, q)$ are bounded linear maps from \mathscr{H}^{0} into $H_{\mathbb{R}}^{1}([0,1])^{2}$ which are still real analytic functions of (p, q).

It follows from Lemma 3.3 and (3.1) that the norm of the linear map

$$
(u, v) \mapsto \int_{0}^{1} d_{(p, q)} G_{2 k-1}(\cdot ; p, q)[(u, v)](x) \cdot G_{2 k}(x ; p, q) \mathrm{d} x
$$

is uniformly bounded with respect to (p, q) on bounded sets of \mathscr{H}^{0} and to $k \in \mathbb{Z}$ (See [Kp; Prop. 5.4]).

It then follows from Theorem 3.1 and from the fact that $\left(\Psi_{k}(p, q)\right)_{k \in \mathbb{Z}}$ is in $l^{2}(\mathbb{Z})$ that we obtain

THEOREM 3.5.

$$
\binom{d_{(p, q)} \Psi_{2 k}[(u, v)]}{d_{(p, q)} \Psi_{2 k-1}[(u, v)]}=\int_{0}^{1}\left(\begin{array}{cc}
\cos 2 k \pi x & -\sin 2 k \pi x \\
\sin 2 k \pi x & \cos 2 k \pi x
\end{array}\right)\binom{u(x)}{v(x)} \mathrm{d} x+l^{2}(k)
$$

where the error term is bounded uniformly with respect to (u, v) and (p, q) in any bounded subset of \mathscr{H}^{0}.

We need to introduce some more notation. For $(p, q) \in \mathscr{H}^{0}$ set

$$
J=\left\{k \in \mathbb{Z} ; \lambda_{2 k-1}(p, q)<\lambda_{2 k}(p, q)\right\}
$$

Then, for $k \in \mathbb{Z}$, define

$$
\begin{aligned}
& H_{2 k}(x ; p, q)= \\
& \quad\binom{F_{2 k-1}^{(1)}(x ; p, q) F_{2 k-1}^{(2)}(x ; p, q)-F_{2 k}^{(1)}(x ; p, q) F_{2 k}^{(2)}(x ; p, q)}{\frac{1}{2}\left(F_{2 k}^{(1)}(x ; p, q)^{2}-F_{2 k}^{(2)}(x ; p, q)^{2}+F_{2 k-1}^{(2)}(x ; p, q)^{2}-F_{2 k-1}^{(1)}(x ; p, q)^{2}\right)}
\end{aligned}
$$

For $k \notin J$ set
$H_{2 k-1}(x ; p, q)=\varepsilon_{k}\binom{F_{2 k}^{(1)}(x ; p, q) F_{2 k-1}^{(2)}(x ; p, q)+F_{2 k-1}^{(1)}(x ; p, q) F_{2 k}^{(2)}(x ; p, q)}{F_{2 k}^{(2)}(x ; p, q) F_{2 k-1}^{(2)}(x ; p, q)-F_{2 k}^{(1)}(x ; p, q) F_{2 k-1}^{(1)}(x ; p, q)}$
and for $k \in J$ define

$$
\begin{aligned}
& H_{2 k-1}(x ; p, q)= \\
& \quad=\varepsilon_{k}\binom{F_{2 k}^{(1)}(x ; p, q) F_{2 k-1}^{(2)}(x ; p, q)+F_{2 k-1}^{(1)}(x ; p, q) F_{2 k}^{(2)}(x ; p, q)}{F_{2 k}^{(2)}(x ; p, q) F_{2 k-1}^{(2)}(x ; p, q)-F_{2 k}^{(1)}(x ; p, q) F_{2 k-1}^{(1)}(x ; p, q)} \\
& \quad+\gamma_{k}(p, q)\binom{\left.\int_{0}^{1}\left\{G_{2 k}^{(1)}(y ; p, q) \frac{\partial G_{2 k-1}^{(1)}}{\partial p(x)}(y ; p, q)+G_{2 k}^{(2)}(y ; p, q) \frac{\partial G_{2 k-1}^{(2)}}{\partial p(x)}(y ; p, q)\right\} \mathrm{d} y\right)}{\left.\int_{0}^{1}\left\{G_{2 k}^{(1)}(y ; p, q) \frac{\partial G_{2 k-1}^{(1)}}{\partial q(x)}(y ; p, q)+G_{2 k}^{(2)}(y ; p, q) \frac{\partial G_{2 k-1}^{(2)}}{\partial q(x)}(y ; p, q)\right\} \mathrm{d} y\right)}
\end{aligned}
$$

Then, from Corollary 3.2, it follows that

$$
\left.\begin{array}{l}
\left(\begin{array}{c}
d_{(p, q)} \Psi_{2 k}[(u, v)] \\
d_{(p, q)}
\end{array} \Psi_{2 k-1}[(u, v)]\right.
\end{array}\right), \begin{aligned}
& =\left(H_{2 k}(\cdot ; p, q),(u(\cdot), v(\cdot))\right)\binom{-\sin 2 \theta_{k}(p, q)}{\cos 2 \theta_{k}(p, q)} \\
& \quad+\left(H_{2 k-1}(\cdot ; p, q),(u(\cdot), v(\cdot))\right)\binom{\cos 2 \theta_{k}(p, q)}{\sin 2 \theta_{k}(p, q)} .
\end{aligned}
$$

THEOREM 3.6. Suppose $(p, q) \in \mathscr{H}^{0}$. Then $d_{(p, q)} \Phi$ is a linear isomorphism form \mathscr{H}^{0} onto \mathscr{M}^{0}.

The proof of Theorem 3.6 is rather long and several steps are needed.
Theorem 3.5 shows that $d_{(p, q)} \Psi$ is a Fredholm operator of index zero. Therefore it suffices to show that $d_{(p, q)} \Psi$ is one to one in order to prove Theorem 3.6.

Assume that $d_{(p, q)} \Psi[(u, v)]=0$ where $(u, v) \in \mathscr{H}^{0}$. From the above formula we conclude that $\left(H_{k}(\cdot ; p, q),(u(\cdot), v(\cdot))\right)=0$ for every $k \in \mathbb{Z}$. Therefore, in order to prove that $d_{(p, q)} \Psi$ is one to one, one must prove that $\left\{H_{k}(\cdot ; p, q)\right\}_{k \in \mathbb{Z}}$ is a Riesz basis of \mathscr{H}^{0}. Using the definition of the H_{k} 's and the asymptotic behavior of the G_{k} 's one shows that $\left\{H_{k}(\cdot ; p, q)\right\}_{k \in \mathbb{Z}}$ is quadratically close to the orthonormal basis $\left(T_{k}(\cdot ; p, q)\right)$ of \mathscr{H}^{0} where

$$
\begin{aligned}
& T_{2 k}(x ; p, q)=-\sin 2 \theta_{k}(p, q)\binom{\cos 2 k \pi x}{-\sin 2 k \pi x}+\cos 2 \theta_{k}(p, q)\binom{\sin 2 k \pi x}{\cos 2 k \pi x} \\
& T_{2 k-1}(x ; p, q)=\cos 2 \theta_{k}(p, q)\binom{\cos 2 k \pi x}{-\sin 2 k \pi x}+\sin 2 \theta_{k}(p, q)\binom{\sin 2 k \pi x}{\cos 2 k \pi x}
\end{aligned}
$$

Thus to prove that $\left(H_{k}(\cdot ; p, q)\right)_{k \in \mathbb{Z}}$ is a basis of \mathscr{H}^{0} it remains to prove that the H_{k} 's are linearly independent, i.e., if $\left(\alpha_{k}\right)_{k \in \mathbb{Z}}$ is a sequence of real numbers such that
(i) $\sum_{k \in \mathbb{Z}} \alpha_{k}^{2}\left\|H_{k}(\cdot ; p, q)\right\|_{L^{2}([0,1])^{2}}^{2}<\infty$ and
(ii) $\sum_{k \in \mathbb{Z}} \alpha_{k} H_{k}=0$,
then $\alpha_{k}=0$ for all k.
First, let us recall that the set $\operatorname{Iso}_{0}(p, q)$ of isospectral potentials is a countable intersection of manifolds and that one can define the normal space $N(p, q)$ and the tangent space $T(p, q)$ of $\operatorname{Iso}_{0}(p, q)$ at (p, q). Using results of [Gre-Gui], an easy computation shows that $\left\{H_{2 k}(\cdot ; p, q)\right\}_{k \in \mathbb{Z}}$ and $\left\{H_{2 k-1}(\cdot ; p, q)\right\}_{k \notin J}$ belong to the normal space $N(p, q)$ of the isospectral set $\operatorname{Iso}_{0}(p, q)$ at (p, q).

Set for $k^{\prime} \in \mathbb{Z}$

$$
\begin{equation*}
\left(p_{k^{\prime}}, q_{k^{\prime}}\right)=\left(\left.\nabla_{(p, q)} \Delta(\lambda ; p, q)\right|_{\lambda=v_{k^{\prime}}(p, q)}\right)^{\perp} \tag{3.2}
\end{equation*}
$$

where $(a, b)^{\perp}=(-b, a),\left(v_{k^{\prime}}(p, q)\right)_{k^{\prime} \in \mathbb{Z}}$ is one of the two Dirichlet auxiliary spectra defined in section 2.

Clearly $\left(p_{k^{\prime}}, q_{k^{\prime}}\right)$ is in the tangent space $T(p, q)$ of $\operatorname{Iso}_{0}(p, q)$ at (p, q). Hence it follows that for every k^{\prime}

$$
\begin{align*}
0 & =\sum_{k \in \mathbb{Z}} \alpha_{k}\left(H_{k}(\cdot ; p, q),\left(p_{k^{\prime}}(\cdot), q_{k^{\prime}}(\cdot)\right)\right), \\
& =\sum_{k \in J} \alpha_{2 k-1}\left(H_{2 k-1}(\cdot ; p, q),\left(p_{k^{\prime}}(\cdot), q_{k^{\prime}}(\cdot)\right)\right) . \tag{3.3}
\end{align*}
$$

The proof of Theorem 3.6 consists of three steps. In the first one we show that
$\alpha_{2 k-1}=0$ for $k \in J$. In the second one we prove that $\alpha_{2 k}=\alpha_{2 k-1}=0$ for $k \notin J$ and in the third one we finally show that $\alpha_{2 k}=0$ for every k in J.

3.1. The first step

Let us begin with a computational lemma.
LEMMA 3.7. If $(u, v) \in T(p, q)$ and k in J such that $\lambda_{2 k-1}(p, q)<v_{k}(p, q)$ $<\lambda_{2 k}(p, q)$, then

$$
\begin{aligned}
& \left.\left(H_{2 k-1}(\cdot ; p, q),(u(\cdot)), v(\cdot)\right)\right) \\
& \quad=-\frac{\gamma_{k}(p, q)}{2}\left(G_{2 k}^{(1)}(0 ; p, q)\right)^{-1} \varepsilon_{k} \cos \theta_{k}(p, q) F_{2 k-1}^{(1)}(0 ; p, q) \\
& \quad \cdot \sum_{j \in \mathbb{Z}}\left(\frac{1}{v_{j}(p, q)-\lambda_{2 k-1}(p, q)}-\frac{1}{v_{j}(p, q)-\lambda_{2 k}(p, q)}\right) \\
& \quad \cdot\left(\nabla_{(p, q)} v_{j}(p, q),(u, v)\right) .
\end{aligned}
$$

Proof of Lemma 3.7. We first prove that for $(u, v) \in T(p, q)$

$$
\begin{equation*}
\gamma_{k}(p, q) d_{(p, q)} \theta_{k}[(u, v)]=\left(H_{2 k-1}(\cdot ; p, q),(u(\cdot), v(\cdot))\right) \tag{3.4}
\end{equation*}
$$

as follows:

$$
\begin{aligned}
& \int_{0}^{1} d_{(p, q)} G_{2 k-1}(\cdot ; p, q)[(u, v)](x) \cdot G_{2 k}(x ; p, q) \mathrm{d} x \\
& \quad=d_{(p, q)} \theta_{k}[(u, v)]+\varepsilon_{k} \cos \theta_{k}(p, q) \int_{0}^{1} d_{(p, q)} F_{2 k-1}(\cdot ; p, q)[(u, v)](x) \\
& \cdot G_{2 k}(x ; p, q) \mathrm{d} x+\sin \theta_{k}(p, q) \int_{0}^{1} d_{(p, q)} F_{2 k}(\cdot ; p, q)[(u, v)](x) \\
& \cdot G_{2 k}(x ; p, q) \mathrm{d} x \\
& =d_{(p, q)} \theta_{k}[(u, v)]+\varepsilon_{k} \int_{0}^{1} d_{(p, q)} F_{2 k-1}(\cdot ; p, q)[(u, v](x) \\
& \cdot F_{2 k}(x ; p, q) \mathrm{d} x .
\end{aligned}
$$

Using $H(p, q) F_{j}=\lambda_{j} F_{j}$ one gets

$$
\begin{aligned}
& \left(d_{(p, q)} F_{2 k-1}(\cdot ; p, q)[(u, v)](\cdot), F_{2 k}(\cdot ; p, q)\right) \\
& \quad=-\frac{1}{\gamma_{k}(p, q)}\left(F_{2 k-1}(\cdot ; p, q),\left(\begin{array}{rr}
-v(\cdot) & u(\cdot) \\
u(\cdot) & v(\cdot)
\end{array}\right) F_{2 k}(\cdot ; p, q)\right)
\end{aligned}
$$

Thus (3.4) follows from the definition of $H_{2 k-1}$. To compute $d_{(p, q)} \theta_{k}[(u, v)]$ take the derivative of $0=G_{2 k-1}^{(1)}(0)=\sin \theta_{k} F_{2 k}^{(1)}(0)+\varepsilon_{k} \cos \theta_{k} F_{2 k-1}^{(1)}(0)$ and use a similar argument as in [Kp, Lemma 6.8] to obtain

$$
\begin{aligned}
& -G_{2 k}^{(1)}(0 ; p, q) d_{(p, q)} \theta_{k}[(u, v)] \\
& =\frac{1}{2} \varepsilon_{k} \cos \theta_{k}(p, q) F_{2 k-1}^{(1)}(0 ; p, q) \\
& \quad \times \sum_{j \in \mathbb{Z}}\left(\frac{1}{v_{j}(p, q)-\lambda_{2 k-1}(p, q)}-\frac{1}{v_{j}(p, q)-\lambda_{2 k}(p, q)}\right) \\
& \quad \cdot\left(\nabla_{(p, q)} v_{j},(u, v)\right) .
\end{aligned}
$$

In the case where $v_{k}(p, q) \in\left\{\lambda_{2 k}(p, q), \lambda_{2 k-1}(p, q)\right\}$ the following result holds.
LEMMA 3.8. If $k \in J$ with $v_{k}(p, q) \in\left\{\lambda_{2 k}(p, q), \lambda_{2 k-1}(p, q)\right\}$, then, for $k^{\prime} \in \mathbb{Z}$,

$$
\left(H_{2 k^{\prime}-1}(\cdot ; p, q),\left(p_{k}(\cdot), q_{k}(\cdot)\right)\right)=\delta_{k^{\prime} k} c_{k} \quad \text { with } c_{k} \neq 0
$$

The proof of Lemma 3.8 follows as in [Kp, Lemma 6.10], once the following result is proved:
"Every $(p, q) \in \mathscr{H}^{0}$ with $v_{k}(p, q) \in\left\{\lambda_{2 k}(p, q), \lambda_{2 k-1}(p, q)\right\}$, for some $k \in J$, is the limit of a sequence $\left(p_{j}, q_{j}\right)_{j \in \mathbb{N}}$ in $\operatorname{Iso}_{0}(p, q)$ with $\lambda_{2 k-1}(p, q)<v_{k}\left(p_{j}, q_{j}\right)<\lambda_{2 k}(p, q)$."

This result easily follows from Appendix A.
Thus using (3.3) and Lemma 3.8 one gets $\alpha_{2 k-1}=0$ for every $k \in J-J_{1}$ where $J_{1}=\left\{k \in \mathbb{Z} ; \lambda_{2 k-1}(p, q)<v_{k}(p, q)<\lambda_{2 k}(p, q)\right\}$. We now prove that $\alpha_{2 k-1}=0$ for $k \in J_{1}$. For that purpose define

$$
A_{k^{\prime}, k}=\left(H_{2 k-1}(\cdot ; p, q),\left(p_{k^{\prime}}, q_{k^{\prime}}\right)\right), \quad k, k^{\prime} \in J_{1}
$$

where $\left(p_{k^{\prime}}, q_{k^{\prime}}\right)$ is given by (3.2). Define

$$
\begin{aligned}
& B_{k^{\prime}, k}=A_{k^{\prime}, k}-A_{k^{\prime}, k} \delta_{k^{\prime} k} \\
& C_{k^{\prime}, k}=A_{k^{\prime}, k} \delta_{k^{\prime}, k}
\end{aligned}
$$

where $\delta_{k^{\prime}, k}$ denotes the Kronecker delta function.
Let A (resp. B, C) be the linear operator associated with the matrix $\left(A_{k^{\prime}, k}\right)_{\left(k^{\prime}, k\right) \in J_{1} \times J_{1}}$ (resp. $\left.\left(B_{k^{\prime} k}\right),\left(C_{k^{\prime} k}\right)\right)$. Then $A($ resp. $B, C) \in \mathscr{B}\left(l^{2}\left(J_{1}\right)\right)$ has the following properties.

LEMMA 3.9.

(i) B is of trace class.
(ii) C is invertible with a bounded inverse.
(iii) A is one-to-one.

It then follows that $\alpha_{2 k-1}=0$ for $k \in J_{1}$ since

$$
\sum_{k \in J_{1}} \alpha_{2 k-1}\left(H_{2 k-1}(\cdot ; p, q),\left(p_{k^{\prime}}, q_{k^{\prime}}\right)\right)=\sum_{k \in J_{1}} \alpha_{2 k-1} A_{k k^{\prime}}, \quad k^{\prime} \in J_{1} .
$$

Proof of Lemma 3.9. Use [Gre, part II Chap 3 Th. 5] to conclude that

$$
\left(\nabla_{p, q} v_{k},\left(p_{k^{\prime}}, q_{k^{\prime}}\right)\right)=\delta_{k k^{\prime}}\left(Z_{2}\left(1, v_{k^{\prime}}\right)-Y_{1}\left(1, v_{k^{\prime}}\right)\right)
$$

From Lemma 3.7, it follows that

$$
\begin{align*}
A_{k^{\prime}, k}= & \frac{1}{2}\left(G_{2 k}^{(1)}(0)\right)^{-1} \varepsilon_{k} \cos \theta_{k}(p, q) F_{2 k-1}^{(1)}(0 ; p, q)\left(Z_{2}\left(1, v_{k^{\prime}}\right)-Y_{1}\left(1, v_{k^{\prime}}\right)\right) \\
& \cdot \frac{\lambda_{2 k}(p, q)-\lambda_{2 k-1}(p, q)}{\left(v_{k^{\prime}}(p, q)-\lambda_{2 k-1}(p, q)\right)\left(\lambda_{2 k}(p, q)-v_{k^{\prime}}(p, q)\right)} \tag{3.5}
\end{align*}
$$

Moreover as we have already observed

$$
\left(G_{2 k}^{(1)}(0 ; p, q)\right)^{-1}=1+l^{2}(k), \quad G_{2 k-1}^{(1)}(0 ; p, q)=l^{2}(k)
$$

as well as $\cos ^{2} \theta_{k}=F_{2 k}^{(1)}(0)^{2} /\left(F_{2 k}^{(1)}(0)^{2}+F_{2 k-1}^{(1)}(0)^{2}\right)$, we conclude that

$$
\begin{aligned}
\mid \cos & \theta_{k}(p, q) F_{2 k-1}^{(1)}(0 ; p, q) \mid \\
& =\frac{\left|F_{2 k}^{(1)}(0 ; p, q) F_{2 k-1}^{(1)}(0 ; p, q)\right|}{\left(F_{2 k}^{(1)}(0 ; p, q)^{2}+F_{2 k-1}^{(1)}(0 ; p, q)^{2}\right)^{1 / 2}} \\
& =\frac{\left|F_{2 k}^{(1)}(0 ; p, q) F_{2 k-1}^{(1)}(0 ; p, q)\right|}{\left(G_{2 k}^{(1)}(0 ; p, q)^{2}+G_{2 k-1}^{(1)}(0 ; p, q)^{2}\right)^{1 / 2}} \\
& =\left|F_{2 k}^{(1)}(0 ; p, q) F_{2 k-1}^{(1)}(0 ; p, q)\right|\left(1+l^{2}(k)\right) \\
& =\left(-\frac{\left.Y_{2}\left(1, \lambda_{2 k}(p, q)\right)\right)}{\dot{\Delta}\left(\lambda_{2 k}(p, q)\right)}\right)^{1 / 2}\left(-\frac{Y_{2}\left(1, \lambda_{2 k-1}(p, q)\right)}{\dot{\Delta}\left(\lambda_{2 k-1}(p, q)\right)}\right)^{1 / 2}\left(1+l^{2}(k)\right)
\end{aligned}
$$

(see the beginning of section 2). Using Lemma B. 3 (Appendix B) we then obtain the estimate

$$
\begin{aligned}
& \left|\cos \theta_{k}(p, q) F_{2 k-1}^{(1)}(0 ; p, q)\right| \\
& \quad=\frac{\left(\left(\lambda_{2 k}\right)(p, q)-v_{k}(p, q)\right)^{1 / 2}\left(v_{k}(p, q)-\lambda_{2 k-1}(p, q)\right)^{1 / 2}}{\lambda_{2 k}(p, q)-\lambda_{2 k-1}(p, q)}\left(1+l^{2}(k)\right) .
\end{aligned}
$$

Further (cf. [Gre, Part II, Ch. 3, Th. 5])

$$
\begin{aligned}
& \left|Z_{2}\left(1, v_{k^{\prime}}(p, q)\right)-Y_{1}\left(1, v_{k^{\prime}}(p, q)\right)\right| \\
& \quad=\left(\Delta^{2}\left(v_{k^{\prime}}(p, q)\right)-4\right)^{1 / 2} \\
& \quad=2\left(\lambda_{2 k^{\prime}}(p, q)-v_{k^{\prime}}(p, q)\right)^{1 / 2}\left(v_{k^{\prime}}(p, q)-\lambda_{2 k^{\prime}-1}(p, q)\right)^{1 / 2}\left(1+l^{2}\left(k^{\prime}\right)\right)
\end{aligned}
$$

where we used for the last equality the representation of $\Delta^{2}-4$ by an infinite product (cf. Appendix B). Thus, from (3.5), one obtains that $\left|A_{k^{\prime} k}\right|$ is given by

$$
\begin{equation*}
\frac{\left(\lambda_{2 k^{\prime}}-v_{k^{\prime}}\right)^{1 / 2}\left(v_{k^{\prime}}-\lambda_{2 k^{\prime}-1}\right)^{1 / 2}\left(\lambda_{2 k}-v_{k}\right)^{1 / 2}\left(v_{k}-\lambda_{2 k-1}\right)^{1 / 2}}{\left(v_{k^{\prime}}-\lambda_{2 k-1}\right)\left(\lambda_{2 k}-v_{k^{\prime}}\right)}\left(1+l^{2}(k)\right)\left(1+l^{2}\left(k^{\prime}\right)\right) . \tag{3.6}
\end{equation*}
$$

From the asymptotic behavior of the λ_{k} 's and v_{k} 's it follows that

$$
B_{k^{\prime}, k}=\frac{a_{k^{\prime}} b_{k}}{\left(k-k^{\prime}\right)^{2}}
$$

where $\left(a_{k^{\prime}}\right)_{k^{\prime} \in J_{1}}$ and $\left(b_{k}\right)_{k \in J_{1}}$ are in $l^{2}\left(J_{1}\right)$. To prove (i) one must show that

$$
\sum_{\substack{k, k^{\prime} \in J_{1} \\ k \neq k^{\prime}}}\left|B_{k^{\prime}, k}\right|<+\infty
$$

By well known properties of the convolution this follows from the estimate

$$
\sum_{\substack{k, k^{\prime} \in J_{1} \\ k \neq k^{\prime}}}\left|B_{k^{\prime}, k}\right| \leqslant \sum_{k^{\prime} \in J_{1}}\left|a_{k^{\prime}}\right| \sum_{\substack{k \in J_{1} \\ k \neq k^{\prime}}} \frac{\left|b_{k}\right|}{\left(k-k^{\prime}\right)^{2}}
$$

From (3.6) we learn that

$$
\left|A_{k k}\right|=1+l^{2}(k) .
$$

Furthermore $A_{k k}$ is different from zero for any $k \in J_{1}$. Thus (ii) follows.
Towards (iii) we first observe that $C^{-1} A=\mathrm{Id}+C^{-1} B$ is a Fredholm operator of index zero. Thus in order to prove the first step we must show that $C^{-1} A$ is one to one, or equivalently, that the Fredholm determinant of $C^{-1} A$ is different from zero. Let $\operatorname{det} C^{-1} A$ be this Fredholm determinant which is a limit of determinants of finite matrices, i.e., $\operatorname{det} C^{-1} A=\lim _{J_{2} \rightarrow J_{1}} \operatorname{det}\left(C^{-1} A\right)_{J_{2}}$ where $\left(C^{-1} A\right)_{J_{2}}$ denotes the $J_{2} \times J_{2}$ matrix $\left(C^{-1} A\right)_{k, k^{\prime} \in J_{2}}$ with J_{2} a finite subset of J_{1}. As
C^{-1} is diagonal, one has

$$
\begin{aligned}
\operatorname{det}\left(C^{-1} A\right)_{J_{2}}=\frac{\operatorname{det} A_{J_{2}}}{\operatorname{det} C_{J_{2}}}= & \operatorname{det}\left(\frac{1}{v_{k^{\prime}}-\lambda_{2 k-1}}-\frac{1}{v_{k^{\prime}}-\lambda_{2 k}}\right)_{k^{\prime}, k \in J_{2}} . \\
& \cdot\left[\prod_{k \in J_{2}}\left(\frac{1}{v_{k}-\lambda_{2 k-1}}-\frac{1}{v_{k}-\lambda_{2 k}}\right)\right]^{-1} .
\end{aligned}
$$

As in $[\mathrm{Kp}]$ one considers the sequence $x=\left(x_{k}\right)_{k \in J_{2}}$ with $x_{k} \in\left\{-\lambda_{2 k-1},-\lambda_{2 k}\right\}$ and $\varepsilon=\left(\varepsilon_{k}\right)_{k \in J_{2}}$ with $\varepsilon_{k}=0$ if $x_{k}=-\lambda_{2 k-1}$ and $\varepsilon_{k}=1$ if $x_{k}=-\lambda_{2 k}$. From [P-S p. 98] (cf. also [Mck-Tru, p. 207]) it follows that

$$
\begin{aligned}
& \operatorname{det}\left(\frac{1}{v_{k^{\prime}}-\lambda_{2 k-1}}-\frac{1}{v_{k^{\prime}}-\lambda_{2 k}}\right)_{k^{\prime}, k \in J_{2}}=\sum_{x}(-1)^{|\varepsilon|} \operatorname{det}\left(\frac{1}{v_{k^{\prime}}+x_{k}}\right)_{k^{\prime}, k \in J_{2}} \\
& \quad=\sum_{x}(-1)^{|\varepsilon|} \frac{\prod_{k^{\prime}}>k}{}\left(v_{k^{\prime}}-v_{k}\right) \prod_{k^{\prime}>k}\left(x_{k^{\prime}}-x_{k}\right) \\
& \prod_{k, k^{\prime}}\left(x_{k}+v_{k^{\prime}}\right)
\end{aligned}
$$

where $|\varepsilon|=\sum_{k \in J_{2}} \varepsilon_{k}$.
Then

$$
\begin{align*}
& \operatorname{det}\left(\frac{1}{v_{k^{\prime}}-\lambda_{2 k-1}}-\frac{1}{v_{k^{\prime}}-\lambda_{2 k}}\right)_{k^{\prime}, k \in J_{2}} \\
& \quad=\sum_{x}\left(\prod_{k^{\prime} \in J_{2}} \frac{1}{\left|v_{k^{\prime}}+x_{k^{\prime}}\right|}\right) \prod_{k^{\prime} \in J_{2}} \prod_{\substack{k>k^{\prime} \\
k \in J_{2}}}\left(1-\frac{x_{k}+v_{k}}{x_{k}+v_{k^{\prime}}}\right)\left(1-\frac{x_{k}+v_{k}}{x_{k^{\prime}}+v_{k}}\right) \\
& =\sum_{x}\left(\prod_{k^{\prime} \in J_{2}} \frac{1}{\left|v_{k^{\prime}}+x_{k^{\prime}}\right|}\right) \prod_{\substack{k, k^{\prime} \in J^{\prime} \\
k>k^{\prime}}}\left(1-\frac{\left(x_{k}+v_{k}\right)\left(x_{k^{\prime}}+v_{k^{\prime}}\right)}{\left(v_{k^{\prime}}+x_{k}\right)\left(x_{k^{\prime}}+v_{k}\right)}\right) . \tag{3.7}
\end{align*}
$$

Note that

$$
1-D_{k, k^{\prime}}=1-\frac{\left(x_{k}+v_{k}\right)\left(x_{k^{\prime}}+v_{k^{\prime}}\right)}{\left(x_{k}+v_{k^{\prime}}\right)\left(x_{k^{\prime}}+v_{k}\right)}>0 \quad \text { for } k \neq k^{\prime}
$$

Furthermore $D_{k k^{\prime}}$ is of the form

$$
D_{k, k^{\prime}}=\frac{a_{k} b_{k^{\prime}}}{\left(k-k^{\prime}\right)^{2}}
$$

with $\left(a_{k}\right)_{k \in \mathbb{Z}}$ and $\left(b_{k^{\prime}}\right)_{k^{\prime} \in \mathbb{Z}}$ in $l^{2}(\mathbb{Z})$. Thus

$$
\sum_{\substack{k, k^{\prime} \in \mathbb{Z} \\ k \neq k^{\prime}}} D_{k, k^{\prime}}<\infty
$$

and there exists an integer $N>0$ independent of J_{2} such that

$$
\Sigma_{N}=\sum_{\substack{|k|| | k^{\prime} \mid \geqslant N \\ k \neq k^{\prime} \in J_{2}}} D_{k, k^{\prime}}<\frac{1}{2}
$$

One deduces that

$$
\prod_{\substack{k, k^{\prime} \in J^{\prime} \\ k \neq k^{\prime} \\|k|,\left|k^{\prime}\right| \geqslant N}}\left(1-D_{k, k^{\prime}}\right) \geqslant 1-\sum_{j \geqslant 1}\left(\Sigma_{N}\right)^{j}=K^{\prime}>0 .
$$

On the other hand one has

$$
\prod_{\substack{k, k^{\prime}>J_{2} \\|k|, k^{\prime} \\|k|,\left|k^{\prime}\right|<N}}\left(1-D_{k, k^{\prime}}\right) \geqslant K^{\prime \prime}>0 .
$$

These two estimates lead to

$$
\begin{equation*}
\prod_{\substack{k, k^{\prime} \in J_{2} \\ k>k^{\prime}}}\left(1-D_{k, k^{\prime}}\right) \geqslant K=K^{\prime} K^{\prime \prime}>0 \tag{3.8}
\end{equation*}
$$

where K does not depend on the finite subset J_{2} of J_{1}. Moreover

$$
\operatorname{det} C_{J_{2}}=\sum_{x} \prod_{k \in J_{2}} \frac{1}{\left|v_{k}+x_{k}\right|}
$$

This implies together with (3.7) and (3.8) that $\operatorname{det}\left(C^{-1} A\right)_{J_{2}} \geqslant K$ uniformly with respect to $J_{2} \subset J_{1}$. Thus $\operatorname{det} C^{-1} A \geqslant K>0$ and A is one-to-one.

3.2. The second step

We must show that $\alpha_{2 k}=\alpha_{2 k-1}=0$ for every $k \notin J$.
The main ingredient of the proof is the following
LEMMA 3.10. (i) $\left(H_{2 k}(\cdot ; p, q), H_{2 k^{\prime}}(\cdot ; p, q)^{\perp}\right)=0, k, k^{\prime} \in \mathbb{Z}$.
(ii) For $k \notin J$ and $k^{\prime} \in \mathbb{Z}$

$$
\left(H_{2 k-1}(\cdot ; p, q), H_{2 k^{\prime}}(\cdot p, q)^{\perp}\right)=-\frac{1}{2} \delta_{k k^{\prime}} W\left(F_{2 k}, F_{2 k-1}\right)(0)
$$

Proof of Lemma 3.10. The proof is the same as in [Gre-Gui, Th. 1.7, assertions (i) and (ii)].

To prove Step 2 we argue as follows. For $k^{\prime} \notin J$ one deduces from the first step and Lemma 3.10 that

$$
\begin{aligned}
0= & \sum_{k \in \mathbb{Z}} \alpha_{2 k}\left(H_{2 k}(\cdot ; p, q), H_{2 k^{\prime}}(\cdot ; p, q)^{\perp}\right) \\
& +\sum_{k \nexists J} \alpha_{2 k-1}\left(H_{2 k-1}(\cdot ; p, q), H_{2 k^{\prime}}(\cdot ; p, q)^{\perp}\right) \\
= & -\frac{1}{2} \alpha_{2 k^{\prime}-1} W\left(F_{2 k^{\prime}}, F_{2 k^{\prime}-1}\right)(0)
\end{aligned}
$$

As $W\left(F_{2 k^{\prime}}, F_{2 k^{\prime}-1}\right)(0) \neq 0$ (Lemma 2.1) we conclude that $\alpha_{2 k^{\prime}-1}=0$ for every $k^{\prime} \in J$.

Next, again for $k^{\prime} \notin J$

$$
\begin{aligned}
0 & =\sum_{k \in \mathbb{Z}} \alpha_{2 k}\left(H_{2 k}(\cdot ; p, q), H_{2 k^{\prime}-1}(\cdot ; p, q)^{\perp}\right) \\
& =-\sum_{k \in \mathbb{Z}} \alpha_{2 k}\left(H_{2 k^{\prime}-1}(\cdot, p, q), H_{2 k}(\cdot ; p, q)^{\perp}\right) \\
& =\frac{1}{2} \alpha_{2 k^{\prime}} W\left(F_{2 k^{\prime}}, F_{2 k^{\prime}-1}\right)(0)
\end{aligned}
$$

and therefore $\alpha_{2 k^{\prime}}=0$ for $k^{\prime} \notin J$. Thus step 2 is proved.

3.3. The third step

Here we show that $\alpha_{2 k}=0$ for every $k \in J$. One already knows that

$$
\begin{equation*}
\sum_{k \in J} \alpha_{2 k} H_{2 k}(\cdot ; p, q)=0 \tag{3.9}
\end{equation*}
$$

Thus it suffices to show that $\left\{H_{2 k}(\cdot ; p, q)\right\}_{k \in J}$ is linearly independent. Note that $H_{2 k}\left(x ; T_{t} p, T_{t} q\right)=H_{2 k}(x+t ; p, q)$. Therefore it suffices to prove that $\left(H_{2 k}\left(\cdot, T_{t} p, T_{t} q\right)\right)_{k \in J}$ is linearly independent for some t. The following result is easy to prove.

LEMMA 3.11. There exists t_{0} such that for all $k \in J$

$$
\lambda_{2 k-1}(p, q)<v_{k}\left(T_{t_{0}} p, T_{t_{0}} q\right)<\lambda_{2 k}(p, q)
$$

To make notation easier, we assume that $t_{0}=0$.

It remains to prove that $\alpha_{2 k}=0$ for $k \in J_{1}=\left\{k \in \mathbb{Z} ; \quad \lambda_{2 k-1}(p, q)\right.$ $\left.<v_{k}(p, q)<\lambda_{2 k}(p, q)\right\}$.

Define

$$
A_{k^{\prime}, k}=\frac{1}{2} \frac{\frac{\partial Y_{2}}{\partial \lambda}\left(1, v_{k}\right)\left(\lambda_{2 k}-\lambda_{2 k-1}\right)}{\left(\lambda_{2 k}-v_{k}\right)^{1 / 2}\left(v_{k}-\lambda_{2 k-1}\right)^{1 / 2}}\left(H_{2 k^{\prime}}(\because ; p, q)^{\perp}, \nabla_{(p, q)} v_{k}\right), \quad k, k^{\prime} \in J_{1} .
$$

A straightforward computation using [Gre-Gui] and [Gre] leads to

$$
\begin{align*}
A_{k^{\prime}, k}= & \frac{\left(\Delta\left(v_{k}\right)^{2}-4\right)^{1 / 2}\left(\lambda_{2 k}-\lambda_{2 k-1}\right)}{2\left(\lambda_{2 k}-v_{k}\right)^{1 / 2}\left(v_{k}-\lambda_{2 k-1}\right)^{1 / 2}} \\
& \cdot\left(\frac{F_{2 k^{\prime}-1}^{(1)}(0)^{2} F_{2 k^{\prime}-1}^{(2)}(0)^{2}}{v_{k}-\lambda_{2 k^{\prime}-1}}-\frac{F_{2 k^{\prime}}^{(1)}(0)^{2} F_{2 k^{\prime}}^{(2)}(0)^{2}}{v_{k}-\lambda_{2 k^{\prime}}}\right) . \tag{3.10}
\end{align*}
$$

Define

$$
\begin{aligned}
& B_{k^{\prime}, k}=A_{k^{\prime}, k}-A_{k^{\prime}, k} \delta_{k^{\prime} k} \\
& C_{k^{\prime}, k}=A_{k^{\prime}, k} \delta_{k^{\prime} k} .
\end{aligned}
$$

Let A (resp. B, C) denote the linear operator associated with the matrix $\left(A_{k^{\prime}, k}\right)_{\left(k^{\prime}, k\right) \in J_{1} \times J_{1}}\left(\right.$ resp. $\left.\left(B_{k^{\prime}, k}\right),\left(C_{k^{\prime}, k}\right)\right)$. Then $A(\operatorname{resp} . B, C) \in \mathscr{B}\left(l^{2}\left(J_{1}\right)\right)$. The proof of the third step follows from

LEMMA 3.12.
(i) B is a Hilbert-Schmidt operator.
(ii) C is invertible with a bounded inverse.
(iii) A is one-to-one.

Proof of Lemma 3.12. Clearly

$$
\begin{aligned}
& F_{2 k^{\prime}-1}^{(1)}(0) F_{2 k^{\prime}-1}^{(2)}(0)+F_{2 k^{\prime}}^{(1)}(0) F_{2 k^{\prime}}^{(2)}(0) \\
& \quad=G_{2 k^{\prime}-1}^{(1)}(0) G_{2 k^{\prime}-1}^{(2)}(0)+G_{2 k^{\prime}}^{(1)}(0) G_{2 k^{\prime}}^{(2)}(0)=l^{2}\left(k^{\prime}\right)
\end{aligned}
$$

Thus

$$
\left(F_{2 k^{\prime}-1}^{(1)}(0) F_{2 k^{\prime}-1}^{(2)}(0)\right)^{2}=\left(F_{2 k^{\prime}}^{(1)}(0) F_{2 k^{\prime}}^{(2)}(0)\right)^{2}+l^{2}\left(k^{\prime}\right)
$$

and $A_{k^{\prime}, k}$ is given by

$$
\begin{align*}
& \frac{1}{2} \frac{\left(\lambda_{2 k}-\lambda_{2 k-1}\right)\left(\Delta\left(v_{k}\right)^{2}-4\right)^{1 / 2}}{\left(\lambda_{2 k}-v_{k}\right)^{1 / 2}\left(v_{k}-\lambda_{2 k-1}\right)^{1 / 2}}\left[\left(F_{2 k^{\prime}}^{(1)}(0) F_{2 k^{\prime}}^{(2)}(0)\right)^{2}\right. \\
& \left.\quad \times\left(\frac{1+l^{2}\left(k^{\prime}\right)}{v_{k}-\lambda_{2 k^{\prime}-1}}-\frac{1}{v_{k}-\lambda_{2 k^{\prime}}}\right)+\frac{l^{2}\left(k^{\prime}\right)}{v_{k}-\lambda_{2 k^{\prime}-1}}\right] . \tag{3.11}
\end{align*}
$$

Using formulas expressing the F_{k} 's in terms of F_{1} and F_{2} (see the beginning of Section 2) and Appendix B one shows that

$$
\begin{aligned}
\left(F_{2 k^{\prime}}^{(1)}(0) F_{2 k^{\prime}}^{(2)}(0)\right)^{2} & =-\frac{Y_{2}\left(1, \lambda_{2 k^{\prime}}\right) Z_{1}\left(1, \lambda_{2 k^{\prime}}\right)}{\left(\dot{\Delta}\left(\lambda_{2 k^{\prime}}\right)\right)^{2}} \\
& =\frac{\left(\lambda_{2 k^{\prime}}-v_{k^{\prime}}\right)\left(\lambda_{2 k^{\prime}}-\mu_{k^{\prime}}\right)}{\left(\lambda_{2 k^{\prime}}-\lambda_{2 k^{\prime}-1}\right)^{2}}\left(1+l^{2}\left(k^{\prime}\right)\right)
\end{aligned}
$$

Further

$$
\left(\Delta\left(v_{k}\right)^{2}-4\right)^{1 / 2}=2\left(\lambda_{2 k}-v_{k}\right)^{1 / 2}\left(v_{k}-\lambda_{2 k-1}\right)^{1 / 2}\left(1+l^{2}(k)\right)
$$

and hence

$$
\begin{aligned}
A_{k^{\prime}, k}= & \frac{\lambda_{2 k}-\lambda_{2 k-1}}{\left(\lambda_{2 k^{\prime}}-\lambda_{2 k^{\prime}-1}\right)^{2}}\left(\lambda_{2 k^{\prime}}-v_{k^{\prime}}\right)\left(\lambda_{2 k^{\prime}}-\mu_{k^{\prime}}\right) \\
& \times\left\{\frac{\lambda_{2 k^{\prime}}-\lambda_{2 k^{\prime}-1}}{\left(\lambda_{2 k}-v_{k}\right)\left(v_{k}-\lambda_{2 k^{\prime}-1}\right)}+\frac{l^{2}\left(k^{\prime}\right)}{v_{k}-\lambda_{2 k^{\prime}-1}}\right\}\left(1+l^{2}(k)\right)\left(1+l^{2}\left(k^{\prime}\right)\right) \\
& +\frac{\lambda_{2 k}-\lambda_{2 k-1}}{v_{k}-\lambda_{2 k^{\prime}-1}} l^{2}\left(k^{\prime}\right)
\end{aligned}
$$

It follows from the asymptotic behavior of λ_{k}, μ_{k} and v_{k} for large $|k|$ that for $k^{\prime} \neq k$

$$
\begin{aligned}
\left|A_{k^{\prime}, k}\right| \leqslant & \left(\frac{\left(\lambda_{2 k}-\lambda_{2 k-1}\right)\left(\lambda_{2 k^{\prime}}-\lambda_{2 k^{\prime}-1}\right)}{\left(k-k^{\prime}\right)^{2} \pi^{2}}+\frac{\left(\lambda_{2 k}-\lambda_{2 k-1}\right)}{\left|k^{\prime}-k\right| \pi} l^{2}\left(k^{\prime}\right)\right) \\
& \times\left(1+l^{2}(k)\right)\left(1+l^{2}\left(k^{\prime}\right)\right) .
\end{aligned}
$$

Thus, for $k^{\prime} \neq k$, we obtain

$$
\left|A_{k^{\prime}, k}\right| \leqslant \frac{l^{2}(k) l^{2}\left(k^{\prime}\right)}{\left(k-k^{\prime}\right)^{2}}+\frac{l^{2}(k) l^{2}\left(k^{\prime}\right)}{\left|k-k^{\prime}\right|}\left(1+l^{2}(k)\right)
$$

and therefore

$$
\sum_{k^{\prime}, k \in J_{1}}\left|B_{k^{\prime}, k}\right|^{2}=\sum_{\substack{k^{\prime}, k \in J_{1} \\ k^{\prime} \neq k}}\left|A_{k^{\prime}, k}\right|^{2}<\infty .
$$

Thus (\mathbf{i}) is proved.
To show (ii) observe that

$$
\frac{\left(F_{2 k-1}^{(1)}(0) F_{2 k-1}^{(2)}(0)\right)^{2}}{v_{k}-\lambda_{2 k-1}}-\frac{\left(F_{2 k}^{(1)}(0) F_{2 k}^{(2)}(0)\right)^{2}}{v_{k}-\lambda_{2 k}}=\frac{1}{\lambda_{2 k}-\lambda_{2 k-1}}\left(1+l^{2}(k)\right) .
$$

Hence

$$
A_{k, k}=1+l^{2}(k) .
$$

As $A_{k k}$ is different from zero for every $k \in J_{1}$, (ii) follows.
In order to prove (iii) we must show that $C^{-1} A$ is one-to-one. Lemma 3.10 shows that $C^{-1} A=\mathrm{Id}+C^{-1} B$ where $C^{-1} B$ is a Hilbert-Schmidt operator. In order to show that $C^{-1} A$ is one-to-one it suffices to prove that the regularized determinant $\operatorname{det}_{2} C^{-1} A$ is different from zero (see [Sim] for the definition and properties of det_{2}). As in the first step one estimates $\operatorname{det}_{2} C^{-1} A$ by the regularized determinants of finite matrices $\left(C^{-1} A\right)_{J^{\prime}}$ associated with a finite subset J^{\prime} of J_{1}.

First, recall that

$$
\operatorname{det}_{2}\left(C^{-1} A\right)_{J^{\prime}}=\operatorname{det}\left(C^{-1} A\right)_{J^{\prime}} \mathrm{e}^{-\operatorname{Tr}\left(C^{-1} B\right)_{j^{\prime}}}=\operatorname{det}\left(C^{-1} A\right)_{J^{\prime}}
$$

because $\operatorname{Tr}\left(C^{-1} B\right)_{J^{\prime}}=0$ by the definition of B. Further

$$
\begin{align*}
\operatorname{det}\left(C^{-1} A\right)_{J^{\prime}}= & \operatorname{det}\left(\frac{\left(F_{2 k^{\prime}-1}^{(1)}(0) F_{2 k^{\prime}-1}^{(2)}(0)\right)^{2}}{v_{k}-\lambda_{2 k^{\prime}-1}}+\frac{\left(F_{2 k^{\prime}}^{(1)}(0) F_{2 k^{\prime}}^{(2)}(0)\right)^{2}}{\lambda_{2 k^{\prime}}-v_{k}}\right)_{\left(k^{\prime}, k\right) \in J^{\prime} \times J^{\prime}} \\
& \cdot \prod_{k \in J^{\prime}}\left(\frac{\left(F_{2 k-1}^{(1)}(0) F_{2 k-1}^{(2)}(0)\right)^{2}}{v_{k}-\lambda_{2 k-1}}+\frac{\left(F_{2 k}^{(1)}(0) F_{2 k}^{(2)}(0)\right)^{2}}{\lambda_{2 k}-v_{k}}\right)^{-1} \tag{3.12}
\end{align*}
$$

and, similar as above,

$$
\begin{align*}
& \operatorname{det}\left(\frac{\left(F_{2 k^{\prime}-1}^{(1)}(0) F_{2 k^{\prime}-1}^{(2)}(0)\right)^{2}}{v_{k}-\lambda_{2 k^{\prime}-1}}+\frac{\left(F_{2 k^{\prime}}^{(1)}(0) F_{2 k^{\prime}}^{(2)}(0)\right)^{2}}{\lambda_{2 k^{\prime}}-v_{k}}\right)_{k^{\prime}, k \in J^{\prime} \times J^{\prime}} \\
& \quad=\sum_{x}(-1)^{|\varepsilon|} \prod_{x_{k}=-\lambda_{2 k}}\left(F_{2 k}^{(1)}(0) F_{2 k}^{(2)}(0)\right)^{2} \prod_{x_{k}=-\lambda_{2 k-1}}\left(F_{2 k-1}^{(1)}(0) F_{2 k-1}^{(2)}(0)\right)^{2} . \\
& \quad \cdot \operatorname{det}\left(\frac{1}{v_{k}+x_{k^{\prime}}}\right)_{\left(k^{\prime}, k\right) \in J^{\prime} \times J^{\prime}} \tag{3.13}
\end{align*}
$$

where $x=\left(x_{k}\right)_{k \in J^{\prime}}, \varepsilon=\left(\varepsilon_{k}\right)_{k \in J^{\prime}}$ and $|\varepsilon|$ are defined as in the first step.
For $\operatorname{det} C_{J}$, we obtain the following expression

$$
\begin{align*}
& \prod_{k \in J^{\prime}}\left(\frac{\left(F_{2 k-1}^{(1)}(0) F_{2 k-1}^{(2)}(0)\right)^{2}}{v_{k}-\lambda_{2 k-1}}+\frac{\left(F_{2 k}^{(1)}(0) F_{2 k}^{(2)}(0)\right)^{2}}{\lambda_{2 k}-v_{k}}\right) \\
& =\sum_{x}(-1)^{|\varepsilon|} \prod_{x_{k}=-\lambda_{2 k}}\left(F_{2 k}^{(1)}(0) F_{2 k}^{(2)}(0)\right)^{2} \prod_{x_{k}=-\lambda_{2 k-1}}\left(F_{2 k-1}^{(1)}(0) F_{2 k-1}^{(2)}(0)\right)^{2} \prod_{k \in J^{\prime}} \frac{1}{v_{k}+x_{k}} . \tag{3.14}
\end{align*}
$$

As in the first step using (3.12)-(3.14) we conclude

$$
\operatorname{det}\left(C^{-1} A\right)_{J^{\prime}}=\operatorname{det}_{2}\left(C^{-1} A\right)_{J^{\prime}} \geqslant K>0
$$

for every finite subset $J^{\prime} \subset J_{1}$, where K is independent of J^{\prime}. Therefore

$$
\operatorname{det}_{2} C^{-1} A \geqslant K>0 .
$$

Theorem 3.6 can be improved in the case where $(p, q) \in \mathscr{H}^{1}$.
THEOREM 3.13. For $(p, q) \in \mathscr{H}^{1} d_{(p, q)} \Phi$ is a linear isomorphism form \mathscr{H}^{1} onto \mathscr{M}^{1}.

For this purpose we need the following
LEMMA 3.14. If $(p, q) \in \mathscr{H}^{1}$ then

$$
\begin{align*}
G_{2 k-1}(x)= & \binom{\sin k \pi x}{\cos k \pi x}+\frac{1}{2 \pi k}\binom{-q(x) \sin k \pi x+\cos k \pi x(p(x)-p(0))}{\sin k \pi x(p(0)+p(x))+q(x) \cos k \pi x} \\
& +\frac{1}{2 k \pi}\left(\int_{0}^{x}\left(p(t)^{2}+q(t)^{2}\right) \mathrm{d} t-x \int_{0}^{1}\left(p(t)^{2}+q(t)^{2}\right) \mathrm{d} t\right) \\
& \times\binom{-\cos k \pi x}{\sin k \pi x}+l_{1}^{2}(k) \tag{3.15}
\end{align*}
$$

and

$$
\begin{align*}
G_{2 k}(x)= & \binom{\cos k \pi x}{-\sin k \pi x}+\frac{1}{2 \pi k}\binom{(p(0)-p(x)) \sin k \pi x-q(x) \cos k \pi x}{-q(x) \sin k \pi x+(p(x)+p(0)) \cos k \pi x} \\
& +\frac{1}{2 k \pi}\left(\int_{0}^{x}\left(p(t)^{2}+q(t)^{2}\right) \mathrm{d} t-x \int_{0}^{1}\left(p(t)^{2}+q(t)^{2}\right) \mathrm{d} t\right) \\
& \times\binom{\sin k \pi x}{\cos k \pi x}+l_{1}^{2}(k) \tag{3.16}
\end{align*}
$$

where the error terms are uniformly bounded in $0 \leqslant x \leqslant 1$ and with respect to (p, q) in any bounded set of \mathscr{H}^{1}.

Proof of Lemma 3.14. From [Gre-Gui; Section 1] we get for $j \in\{2 k-1,2 k\}$

$$
\begin{align*}
F_{1}\left(x, \lambda_{j}\right)= & \binom{\cos k \pi x}{-\sin k \pi x}+\frac{1}{2 k \pi}\binom{-(p(x)+p(0)) \sin k \pi x+(q(0)-q(x)) \cos k \pi x}{-(q(x)+q(0)) \sin k \pi x+(p(x)-p(0)) \cos k \pi x} \\
& +\frac{1}{2 k \pi}\left(\int_{0}^{x}\left(p(t)^{2}+q(t)^{2}\right) \mathrm{d} t-x\left(\|p\|^{2}+\|q\|^{2}\right)\right)\binom{\sin k \pi x}{\cos k \pi x}+l_{1}^{2}(k) \tag{3.17}
\end{align*}
$$

and

$$
\begin{align*}
F_{2}\left(x, \lambda_{j}\right)= & \binom{\sin k \pi x}{\cos k \pi x}+\frac{1}{2 k \pi}\binom{(p(x)-p(0)) \cos k \pi x-(q(x)+q(0)) \sin k \pi x}{(q(x)-q(0)) \cos k \pi x+(p(x)+p(0)) \sin k \pi x} \\
& +\frac{1}{2 k \pi}\left(\int_{0}^{x}\left(p(t)^{2}+q(t)^{2}\right) \mathrm{d} t-x\left(\|p\|^{2}+\|q\|^{2}\right)\right) \\
& \times\binom{-\cos 2 k \pi x}{\sin 2 k \pi x}+l_{1}^{2}(k) \tag{3.18}
\end{align*}
$$

Then for $j \in\{2 k-1,2 k\}$ and for $k \neq 0$

$$
\begin{align*}
& F_{1}\left(0, \lambda_{j}\right)=\binom{1}{0}, \quad F_{1}\left(1, \lambda_{j}\right)=\binom{(-1)^{k}}{0}+l_{1}^{2}(k) \\
& \left\|F_{1}\left(\cdot, \lambda_{j}\right)\right\|_{L^{2}([0,1])^{2}}=1+\frac{q(0)}{k \pi}+l_{1}^{2}(k) \tag{3.19}
\end{align*}
$$

and

$$
\begin{align*}
& F_{2}\left(0, \lambda_{j}\right)=\binom{0}{1}, \quad F_{2}\left(1, \lambda_{j}\right)=\binom{0}{(-1)^{k}}+l_{1}^{2}(k), \\
& \left\|F_{2}\left(\cdot, \lambda_{j}\right)\right\|_{L^{2}([0,1])^{2}}=1-\frac{q(0)}{k \pi}+l_{1}^{2}(k) . \tag{3.20}
\end{align*}
$$

Further

$$
\begin{equation*}
\left(F_{1}\left(\cdot, \lambda_{j}\right), F_{2}\left(\cdot, \lambda_{j}\right)\right)_{L^{2}([0,1])^{2}}=-\frac{p(0)}{k \pi}+l_{1}^{2}(k) \tag{3.21}
\end{equation*}
$$

Following the proof of Lemma 3.4 we now obtain for $j \in\{2 k-1,2 k\}$

$$
\begin{align*}
& I_{k}(\cdot)=\frac{F_{1}\left(\cdot, \lambda_{j}\right)}{\left\|F_{1}\left(\cdot, \lambda_{j}\right)\right\|_{L^{2}([0,1])^{2}}}+l_{1}^{2}(k) \tag{3.22}\\
& G_{2 k-1}(\cdot)=\frac{F_{2}\left(\cdot, \lambda_{j}\right)}{\left\|F_{2}\left(\cdot, \lambda_{j}\right)\right\|_{L^{2}([0,1])^{2}}}+l_{1}^{2}(k) . \tag{3.23}
\end{align*}
$$

The error terms are in $l_{1}^{2}(\mathbb{Z})$ because, for $(p, q) \in \mathscr{H}^{1},\left(\gamma_{k}(p, q)\right)_{k \in \mathbb{Z}} \in l_{1}^{2}(\mathbb{Z})$.
Define for $|k|$ sufficiently large

$$
\begin{equation*}
L_{k}(\cdot)=\frac{\left\|F_{1}\left(\cdot, \lambda_{2 k-1}\right)\right\| I_{k}(\cdot)+(p(0) / k \pi) G_{2 k-1}(\cdot)}{\| \| F_{1}\left(\cdot, \lambda_{2 k-1}\right)\left\|I_{k}(\cdot)+(p(0) / k \pi) G_{2 k-1}(\cdot)\right\|} \tag{3.24}
\end{equation*}
$$

Thus $L_{k}(\cdot) \in E_{k}(p, q)$ and $\left\|L_{k}(\cdot)\right\|_{L^{2}([0,1])^{2}}=1$. It follows from (3.19), (3.21), (3.22) and (3.24) that

$$
\begin{equation*}
\left(G_{2 k-1}(\cdot), L_{k}(\cdot)\right)_{L^{2}([0,1])^{2}}=l_{1}^{2}(k) \tag{3.25}
\end{equation*}
$$

for $|k|$ sufficiently large.
Thus for $|k|$ sufficiently large, there exist α_{k} and β_{k} such that

$$
G_{2 k}(\cdot)=\alpha_{k} L_{k}(\cdot)+\beta_{k} G_{2 k-1}(\cdot)
$$

From $\left\|G_{2 k}(\cdot)\right\|=1$ and $\left(G_{2 k}(\cdot), G_{2 k-1}(\cdot)\right)=0$ we deduce that

$$
1=\alpha_{k}^{2}+\beta_{k}^{2}+2 \alpha_{k} \beta_{k}\left(L_{k}(\cdot), G_{2 k-1}(\cdot)\right)
$$

and

$$
0=\alpha_{k}\left(L_{k}(\cdot), G_{2 k}(\cdot)\right)+\beta_{k} .
$$

It then follows from (3.25) that

$$
\beta_{k}=l_{1}^{2}(k) \quad \text { and } \quad \alpha_{k}=1+l_{1}^{1}(k) .
$$

We then obtain

$$
\begin{equation*}
G_{2 k}(\cdot)=L_{k}(\cdot)+l_{1}^{2}(k) \tag{3.26}
\end{equation*}
$$

Finally (3.15) and (3.16) are deduced from (3.17)-(3.23) and (3.26) and Lemma 3.14 is proved.

We then obtain
LEMMA 3.15. If $(p, q) \in \mathscr{H}^{1}$ and $(u, v) \in \mathscr{H}^{0}$ then

$$
\begin{aligned}
& d_{(p, q)} \Psi_{2 k}[(u, v)]=-\int_{0}^{1} \sin 2 k \pi x v(x) \mathrm{d} x+\int_{0}^{1} \cos 2 k \pi x u(x) \mathrm{d} x+l_{1}^{2}(k) \\
& d_{(p, q)} \Psi_{2 k-1}[(u, v)]=\int_{0}^{1} \cos 2 k \pi x v(x) \mathrm{d} x+\int_{0}^{1} \sin 2 k \pi x u(x) \mathrm{d} x+l_{1}^{2}(k)
\end{aligned}
$$

where the error terms are uniform with respect to (u, v) on any bounded set of \mathscr{H}^{0}.
Proof of Lemma 3.15. As $(p, q) \in \mathscr{H}^{1}$, the gap sequence $\left(\gamma_{k}\right)_{k \in \mathbb{Z}}$ is in $l_{1}^{2}(\mathbb{Z})$. Lemma 3.15 then follows from Theorem 3.1 and the asymptotic estimates (3.15) and (3.16).

Proof of Theorem 3.13. It follows from Theorem 3.6 that $d_{(p, q)} \Phi$ is one-to-one. To prove that $d_{(p, q)} \Phi$ is onto it is equivalent to show that the linear map $d_{(p, q)} \Psi$ from \mathscr{H}^{1} into $l_{1}^{2}(\mathbb{Z}) \times l_{1}^{2}(\mathbb{Z})$ given by

$$
d_{(p, q)} \Psi[(u, v)]=\left(d_{(p, q)} \Psi_{2 k}[(u, v)], d_{(p, q)} \Psi_{2 k-1}[(u, v)]\right)_{k \in \mathbb{Z}}
$$

is onto.
Let $\left(a_{k}\right)_{k \in \mathbb{Z}}$ and $\left(b_{k}\right)_{k \in \mathbb{Z}}$ be in $l_{1}^{2}(\mathbb{Z})$. From Theorem 3.6 it follows that there exist $u(\cdot)$ and $v(\cdot)$ in $L^{2}([0,1])$ such that

$$
d_{(p, q)} \Psi[(u, v)]=\left(a_{k}, b_{k}\right)_{k \in \mathbb{Z}} .
$$

It is to prove that (u, v) is in \mathscr{H}^{1}. Lemma 3.15 shows that each of the sequences

$$
\left.\left.\begin{array}{l}
\left(\int_{0}^{1} \cos 2 n \pi x\right. \\
v(x) \mathrm{d} x)_{n \in \mathbb{N}}, \quad\left(\int_{0}^{1} \cos 2 n \pi x\right.
\end{array} \quad u(x) \mathrm{d} x\right)_{n \in \mathbb{N}}\right)
$$

are in $l_{1}^{2}(\mathbb{N})$. Then, as in the proof of Theorem I. 18 of [Gre-Gui], this implies that $u(\cdot)$ and $v(\cdot)$ are in $H^{1}([0,1])$ with $u(1)-u(0)=v(1)-v(0)=0$.

Appendix A

In this appendix we generalize Theorem 3.7 of [Gre-Gui].
Let $\pi(\cdot, \cdot)$ be the map from \mathscr{H}^{0} into $\mathbb{R}^{\mathbb{Z}} \times \mathbb{R}^{\mathbb{Z}}$ defined by

$$
\pi(p, q)=\left(\left(\mu_{k}(p, q)\right)_{k \in \mathbb{Z}},\left(\chi_{k}(p, q)\right)_{k \in \mathbb{Z}}\right)
$$

where the $\mu_{k}(p, q)$'s are the zeroes of the map $\lambda \rightarrow Z_{1}(1, \lambda ; p, q)$ and $\chi_{k}(p, q)=\log \left\{(-1)^{k} Y_{1}\left(1, \mu_{k}(p, q)\right)\right\}$. Let for $(p, q) \in \mathscr{H}^{0}$

$$
\begin{aligned}
& \mathscr{T}_{(p, q)}=\{ \left(\left(\xi_{k}\right)_{k \in \mathbb{Z}},\left(\eta_{k}\right)_{k \in \mathbb{Z}}\right) \in\left(\prod_{k \in \mathbb{Z}}\left[\lambda_{2 k-1}(p, q), \lambda_{2 k}(p, q)\right]\right) \times \mathbb{R}^{\mathbb{Z}} ; \\
&\left.\Delta\left(\xi_{k} ; p, q\right)=2(-\mathbf{1})^{k} \cosh \eta_{k}, k \in \mathbb{Z}\right\} .
\end{aligned}
$$

THEOREM A.1. Suppose $\left(p_{0}, q_{0}\right) \in \mathscr{H}^{0}$. Then $\pi(\cdot, \cdot)$ is a homeomorphism from Iso $_{0}\left(p_{0}, q_{0}\right)$ onto $\mathscr{T}_{\left(p_{0}, q_{0}\right)}$.

In [Gre-Gui] Theorem A. 1 is proved for $\left(p_{0}, q_{0}\right) \in \mathscr{H}^{1}$ using the isospectral flows ($k \in \mathbb{Z}$)

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t}\binom{p(\cdot, t)}{q(\cdot, t)}=V_{k}(p(\cdot, t), q(\cdot, t)) \\
& p(x, 0)=p_{0}(x) \quad \text { and } \quad q(x, 0)=q_{0}(x) \tag{A.1}
\end{align*}
$$

where

$$
V_{k}(p(\cdot), q(\cdot))=\binom{\left.\frac{\partial \Delta}{\partial q(\cdot)}(\lambda ; p(\cdot), q(\cdot))\right|_{\lambda=\mu_{k}(p(\cdot), q(\cdot))}}{-\left.\frac{\partial \Delta}{\partial p(\cdot)}(\lambda ; p(\cdot), q(\cdot))\right|_{\lambda=\mu_{k}(p(\cdot), q(\cdot))}}
$$

According to [Gre-Gui], the ordinary differential equation (A.1) has a unique solution in $H^{1}\left(\left[-t_{0}, t_{0}\right], \mathscr{H}^{0}\right)$ for initial values in \mathscr{H}^{0} with $t_{0}>0$ chosen sufficiently small, and for this solution to exist globally in t, it suffices to prove the following

LEMMA A.2. Let $(p(\cdot, t), q(\cdot, t))$ be a solution of (A.1) defined on a compact interval $I \subseteq \mathbb{R}, 0 \in I$, in $H^{1}\left(I ; \mathscr{H}^{0}\right)$. Then

$$
\|p(\cdot, t), q(\cdot, t)\|_{\mathscr{H}^{0}}=\left\|p_{0}(\cdot), q_{0}(\cdot)\right\|_{\mathscr{H}^{0}}, \quad t \in I
$$

REMARK A.3. If the potentials $\left(p_{0}(\cdot), q_{0}(\cdot)\right) \in \mathscr{H}^{1}$, it is easy to show that $\|(p(\cdot, t), q(\cdot, t))\|_{\mathscr{H}^{\circ}}$ is independent of t as this quantity is a spectral invariant appearing in the asymptotic expansion of the λ_{k} 's (cf. [Gre-Gui]).

Proof of Lemma A.2. Define $u(x, t)=(p(x, t), q(x, t))$ and $u_{0}(x)=\left(p_{0}(x), q_{0}(x)\right)$. Choose a sequence $\left(u_{0}^{(n)}\right)_{n \geqslant 0}$ in \mathscr{H}^{1} which converges to u_{0} in \mathscr{H}^{0}. According to [Gre-Gui] there exists a unique solution $u^{(n)}(x, t)$ of (A.1) in $H^{1}\left(\mathbb{R} ; \mathscr{H}^{1}\right)$. Moreover these solutions satisfy for a.e t :

$$
\left\|\frac{\mathrm{d}}{\mathrm{~d} t} u^{(n)}(\cdot, t)\right\|_{\mathscr{H}^{0}} \leqslant \beta\left(\left\|u^{(n)}(\cdot, 0)\right\|_{\left.\mathscr{H}^{0}\right)}\right.
$$

where $\beta(\cdot)$ is a positive function on \mathbb{R} which is independent of n and t. (See [Gre; Thm. 2, p. 132]).

Thus $\left(u^{(n)}\right)_{n \geqslant 0}$ is a bounded sequence in $H^{1}\left(I ; \mathscr{H}^{0}\right)$. Hence there exists a subsequence, again denoted by $\left(u^{(n)}\right)_{n \geqslant 0}$, which converges weakly in $H^{1}\left(I, \mathscr{H}^{0}\right)$ to a function $v \in H^{1}\left(I ; \mathscr{H}^{0}\right)$, i.e.,

$$
\lim _{n \rightarrow \infty} \frac{\mathrm{~d}^{j}}{\mathrm{~d} t^{j}} u^{(n)}=\frac{\mathrm{d}^{j} v}{\mathrm{~d} t^{j}} \text { weakly in } L^{2}\left(I, \mathscr{H}^{0}\right) \text { for } j=0,1
$$

Furthermore it follows from [Gre, Part II, Chap. 3, Th. 2] and [Pö-Tru] that the vector fields V_{k} are compact on \mathscr{H}^{0}. Thus $\left(V_{k}\left(u^{(n)}\right)\right)_{n \geqslant 1}$ converges strongly to $V_{k}(v)$ in $L^{2}\left(I, \mathscr{H}^{0}\right)$. Hence

$$
\begin{equation*}
\frac{\mathrm{d} v}{\mathrm{~d} t}=V_{k}(v) \text { in } L^{2}\left(I, \mathscr{H}^{0}\right) \tag{A.2}
\end{equation*}
$$

The trace theorem guarantees the weak-convergence of $\left(u^{(n)}(\cdot, 0)\right)_{n \geqslant 0}$ weakly in \mathscr{H}^{0} to $v(\cdot, 0)$ as n tends to infinity and $\left(u^{(n)}(\cdot, 0)\right)_{n \geqslant 0}=\left(u_{0}^{(n)}(\cdot)\right)_{n \geqslant 0}$ converges to $u_{0}(\cdot)$ strongly in \mathscr{H}^{0}. Thus $v(x, 0)=u_{0}(x)$ for a.e. x in $[0,1]$.

By the uniqueness of the solution to (A.1) we get $u(x, t)=v(x, t)$ for a.e. $x \in[0,1]$ and for every $t \in I$. Since $\left(u^{(n)}(\cdot, t)\right)_{n \geqslant 0}$ converges to $u(\cdot, t)$ weakly in \mathscr{H}^{0} and $\left(\frac{\mathrm{d} u^{(n)}}{\mathrm{d} t}(\cdot, t)\right)_{n \geqslant 0}$ converges to $\frac{\mathrm{d} u}{\mathrm{~d} t}(\cdot, t)$ strongly in \mathscr{H}^{0} for every $t \in I$,

$$
\left\{\left(u^{(n)}(\cdot, t), \frac{\mathrm{d} u^{(n)}}{\mathrm{d} t}(\cdot, t)\right)\right\}_{n \geqslant 0} \text { converges to }\left(u(\cdot, t), \frac{\mathrm{d} u}{\mathrm{~d} t}(\cdot, t)\right)
$$

for a.e. t in I.
Furthermore

$$
\left(u^{(n)}(\cdot, t), \frac{\mathrm{d}}{\mathrm{~d} t} u^{(n)}(\cdot, t)\right)=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|u^{(n)}(\cdot, t)\right\|_{\mathscr{H}^{0}}^{2}
$$

and it follows from Remark A. 3 that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|u^{(n)}(\cdot, t)\right\|_{\mathscr{H}^{0}}^{2}=0 \text { for every } n \in \mathbb{N}
$$

Therefore

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|u(\cdot, t)\|_{\mathscr{H}^{0}}^{2}=0 \quad \text { for every } t \text { in } I
$$

and Lemma A. 2 is proved.
As a corollary we obtain the following generalization of Theorem 3.7 in [GreGui].

COROLLARY A.4. Suppose that $(p, q) \in \mathscr{H}^{0}$. Then
(i) $\operatorname{Iso}_{0}(p, q)=\left\{\left(p^{\prime}, q^{\prime}\right) \in \mathscr{H}^{0} ; \gamma_{k}\left(p^{\prime}, q^{\prime}\right)=\gamma_{k}(p, q), k \in \mathbb{Z}\right\}$
(ii) $\|(p, q)\|_{\mathscr{H}^{0}}$ is a spectral invariant, i.e. is constant on $\operatorname{Iso}_{0}(p, q)$.

In particular, this proves Theorem 1.1 as stated in the introduction.

Appendix B

In this appendix we prove the asymptotic expansions used in the proof of Theorem 3.4. The first result concerns certain asymptotic properties of the discriminant $\Delta(\lambda)$.

LEMMA B.1. Suppose (p, q) in \mathscr{H}^{0}. Then, for every $k \in \mathbb{Z}$,
(i) $\dot{\Delta}\left(\lambda_{2 k}(p, q)\right)=(-1)^{k+1} \gamma_{k}(p, q)\left(1+l^{2}(k)\right)$
(ii) $\dot{\Delta}\left(\lambda_{2 k-1}(p, q)\right)=(-1)^{k} \gamma_{k}(p, q)\left(1+l^{2}(k)\right)$.

Proof of Lemma B.1. We only prove (i). Assertion (ii) follows by a similar argument. In [Gre-Gui] it is shown that

$$
\Delta(\lambda)^{2}-4=-4\left(\lambda_{0}-\lambda\right)\left(\lambda_{-1}-\lambda\right) \prod_{k \in \mathbb{Z}^{*}} \frac{\left(\lambda_{2 k}-\lambda\right)\left(\lambda_{2 k-1}-\lambda\right)}{k^{2} \pi^{2}}
$$

where $\prod_{k \in \mathbb{Z}^{*}} a_{k}$ means $\prod_{k \in \mathbb{N}^{*}} a_{k} \cdot a_{-k}$.
Thus, for $k \in \mathbb{Z}^{*}$,

$$
\begin{aligned}
2 \Delta\left(\lambda_{2 k}\right) \dot{\Delta}\left(\lambda_{2 k}\right)= & -4\left(\lambda_{0}-\lambda_{2 k}\right)\left(\lambda_{-1}-\lambda_{2 k}\right) \frac{\gamma_{k}}{k^{2} \pi^{2}} \\
& \cdot \prod_{\substack{l \in \mathbb{Z}^{*} \\
l \neq k}} \frac{\left(\lambda_{2 l}-\lambda_{2 k}\right)\left(\lambda_{2 l-1}-\lambda_{2 k}\right)}{l^{2} \pi^{2}} .
\end{aligned}
$$

Since $\Delta\left(\lambda_{2 k}\right)=2(-1)^{k}$ this leads to

$$
\dot{\Delta}\left(\lambda_{2 k}\right)=(-1)^{k+1} \gamma_{k}\left(1+l^{2}(k)\right) \prod_{\substack{l \in \bar{Z}^{*} \\ l \neq k}} \frac{\left(\lambda_{2 l}-\lambda_{2 k}\right)\left(\lambda_{2 l-1}-\lambda_{2 k}\right)}{l^{2} \pi^{2}} .
$$

Further, using that the Hilbert transform is a bounded operator on $l^{2}(\mathbb{Z})$,

$$
\prod_{\substack{l \in \mathbb{Z}^{*} \\ l \neq k}} \frac{\left(\lambda_{2 l}-\lambda_{2 k}\right)\left(\lambda_{2 l-1}-\lambda_{2 k-1}\right)}{l^{2} \pi^{2}}=\prod_{\substack{l \in \mathbb{Z}^{*} \\ l \neq k}} \frac{\left(l \pi-\lambda_{2 k}\right)^{2}}{l^{2} \pi^{2}}(1+r(k, l))
$$

where the error term satisfies $|r(k, l)| \leqslant l^{2}(k)$ for every $l \in \mathbb{Z}^{*}, l \neq k$. Using the well known product formula

$$
\frac{\sin \lambda}{\lambda}=\prod_{l \geqslant 1} \frac{l^{2} \pi^{2}-\lambda}{l^{2} \pi^{2}}
$$

we finally obtain

$$
\begin{aligned}
& \prod_{l \in \mathbb{Z}^{*}, l \neq k} \frac{\left(\lambda_{2 l}-\lambda_{2 k}\right)\left(\lambda_{2 l-1}-\lambda_{2 k}\right)}{l^{2} \pi^{2}} \\
& =\left(\frac{\sin \lambda_{2 k}}{\lambda_{2 k}} \frac{k \pi}{k \pi-\lambda_{2 k}}\right)^{2}\left(1+l^{2}(k)\right)=1+l^{2}(k)
\end{aligned}
$$

LEMMA B.2. Let (p, q) be in \mathscr{H}^{0}. For every $k \in \mathbb{Z}$
(i) $Y_{2}\left(1, \lambda_{2 k}(p, q)\right)=(-1)^{k}\left(\lambda_{2 k}(p, q)-v_{k}(p, q)\right)\left(1+l^{2}(k)\right)$
(ii) $Y_{2}\left(1, \lambda_{2 k-1}(p, q)\right)=(-1)^{k}\left(\lambda_{2 k-1}(p, q)-v_{k}(p, q)\right)\left(1+l^{2}(k)\right)$.

Proof of Lemma B.2. In [Gre-Gui] it is proved that

$$
Y_{2}(1, \lambda ; p, q)=\left(\lambda-v_{0}(p, q)\right) \prod_{m \in \mathbb{Z}^{*}} \frac{v_{m}(p, q)-\lambda}{m \pi} .
$$

Thus for $k \in \mathbb{Z}^{*}$ and $j \in\{2 k-1,2 k\}$ we obtain

$$
\begin{aligned}
& Y_{2}\left(1, \lambda_{j}(p, q) ; p, q\right) \\
&=-\frac{\left(\lambda_{j}(p, q)-v_{0}(p, q)\right)}{2 \pi}\left(\lambda_{j}(p, q)-v_{k}(p, q)\right) \prod_{\substack{m \in \mathbb{Z}^{*} \\
m \neq k}} \frac{\left(v_{m}(p, q)-\lambda_{j}(p, q)\right)}{m \pi} \\
&=(-1)^{k}\left(\lambda_{j}(p, q)-v_{k}(p, q)\right)\left|\frac{\left(\lambda_{j}(p, q)-v_{0}(p, q)\right)}{k \pi} \prod_{\substack{m \in \mathbb{Z}^{*} \\
m \neq k}} \frac{\left(v_{m}(p, q)-\lambda_{j}(p, q)\right)}{m \pi}\right|
\end{aligned}
$$

from which one deduces Lemma B.2, using similar arguments as in the proof of Lemma B.1.

Combining the two lemmas we obtain
LEMMA B.3. Let (p, q) be in \mathscr{H}^{0}. Then for every k with $\lambda_{2 k-1}<\lambda_{2 k}$,
(i) $-\frac{Y_{2}\left(1, \lambda_{2 k}(p, q)\right)}{\dot{\Delta}\left(\lambda_{2 k}(p, q)\right)}=\frac{\lambda_{2 k}(p, q)-v_{k}(p, q)}{\gamma_{k}(p, q)}\left(1+l^{2}(k)\right)$
(ii) $-\frac{Y_{2}\left(1, \lambda_{2 k-1}(p, q)\right)}{\dot{\Delta}\left(\lambda_{2 k-1}(p, q)\right)}=\frac{v_{k}(p, q)-\lambda_{2 k-1}(p, q)}{\gamma_{k}(p, q)}\left(1+l^{2}(k)\right)$

References

[Dui] J. J. Duistermaat. On global action-angle coordinates, CPAM 33 (1980), p. 687-706.
[Gar-Tru 1] J. Garnett and E. Trubowitz. Gaps and bands of one dimensional periodic Schrödinger operators. Comment. Math. Helvetici, 59, p. 258-312. (1984).
[Gar-Tru 2] J. Garnett and E. Trubowitz. Gaps and bands of one dimensional periodic Schrödinger operators II. Comment. Math. Helvetici, 62, p. 18-37 (1987).
[Gre] B. Grébert. Problèmes spectraux inverses pour les systèmes AKNS sur la droite réelle. Thèse de l'Université Paris-Nord. Mai 1990.
[Gre-Gui] B. Grébert and J. C. Guillot. Gaps of one dimensional periodic AKNS systems. Rapport du Centre de Mathématiques Appliquées de l'Ecole Polytechnique no. 215. Juin 1990. To appear in Forum Mathematicum.
[Ka] T. Kato. Perturbation theory for linear operators. 2nd ed., Springer-Verlag, 1976.
[Kp] T. Kappeler. Foliation by the Korteweg-de Vries equation (to appear in Ann. Inst. Fourier).
[Mck-Tru] H. P. McKean, E. Trubowitz. Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points. C.P.A.M. 29, p. 143-226 (1976).
[Pö-Tru] J. Pöschel and E. Trubowitz. Inverse Spectral Theory. Academic Press (1987).
[P-S] G. Polya and G. Szegö. Aufgaben und Lehrsätze aus der Analysis. Vol. 2, 3rd ed., Grundlehren, Bd 20, Springer-Verlag, New York, 1964.
[Pre] E. Previato. Hyperelliptic quasi-periodic and solitons solutions of the nonlinear Schrödinger equation. Duke Math. J. 52, p. 329-377 (1985).
[Sim] B. Simon. Trace ideals. Cambridge University Press, 1979.
[Tru] E. Trubowitz. The inverse problem for periodic potentials. C.P.A.M., 30, p. 321-337 (1977).

[^0]: \dagger Partially supported by NSF.

