A fine limit property of functions superharmonic outside a manifold
Compositio Mathematica, Tome 83 (1992) no. 2, pp. 239-249.
@article{CM_1992__83_2_239_0,
     author = {Gardiner, Stephen J.},
     title = {A fine limit property of functions superharmonic outside a manifold},
     journal = {Compositio Mathematica},
     pages = {239--249},
     publisher = {Kluwer Academic Publishers},
     volume = {83},
     number = {2},
     year = {1992},
     mrnumber = {1174425},
     zbl = {0759.31002},
     language = {en},
     url = {http://www.numdam.org/item/CM_1992__83_2_239_0/}
}
TY  - JOUR
AU  - Gardiner, Stephen J.
TI  - A fine limit property of functions superharmonic outside a manifold
JO  - Compositio Mathematica
PY  - 1992
SP  - 239
EP  - 249
VL  - 83
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1992__83_2_239_0/
LA  - en
ID  - CM_1992__83_2_239_0
ER  - 
%0 Journal Article
%A Gardiner, Stephen J.
%T A fine limit property of functions superharmonic outside a manifold
%J Compositio Mathematica
%D 1992
%P 239-249
%V 83
%N 2
%I Kluwer Academic Publishers
%U http://www.numdam.org/item/CM_1992__83_2_239_0/
%G en
%F CM_1992__83_2_239_0
Gardiner, Stephen J. A fine limit property of functions superharmonic outside a manifold. Compositio Mathematica, Tome 83 (1992) no. 2, pp. 239-249. http://www.numdam.org/item/CM_1992__83_2_239_0/

1 D.H. Armitage: Zero sets that force the growth of a subharmonic function. Proc. R. Ir. Acad. 86A (1986) 5-17. | MR | Zbl

2 K. Burdzy: Brownian excursions and minimal thinness. I., Ann. Prob. 15 (1987) 676-689. | MR | Zbl

3 G.A. Cámera: On a condition of thinness at infinity, Comp. Math. 70 (1989) 1-11. | Numdam | MR | Zbl

4 J. Deny: Un théorème sur les ensembles effilés, Annls. Univ. Grenoble, Sect. Sci. Math. Phys. 23 (1948) 139-142. | Numdam | MR | Zbl

5 J.L. Doob: Classical potential theory and its probabilistic counterpart, Springer, New York 1984. | MR | Zbl

6 W.K. Hayman: Subharmonic functions, Volume 2, Academic Press, London 1989. | MR | Zbl

7 L.L. Helms: Introduction to potential theory, Krieger, New York 1975. | MR

8 S.C. Port and C.J. Stone: Brownian motion and classical potential theory, Academic Press, New York 1978. | MR | Zbl

9 P.J. Rippon: A boundary estimate for harmonic functions, Math. Proc. Cambridge Philos. Soc. 91 (1982) 79-90. | MR | Zbl

10 P.J. Rippon: The fine boundary behaviour of certain delta-subharmonic functions, J. London Math. Soc. (2)26 (1982) 487-503. | MR | Zbl